

A Cognitive Approach to
the Reconstruction of ER
Schema from Database

Applications

Oreste Signore
Mario Loffredo - Mauro Gregori - Marco Cima

ISCIS IX

Using Procedural
Patterns in Abstracting

Relational Schemata

Oreste Signore
Mario Loffredo - Mauro Gregori - Marco Cima

SEAL (Software Engineering and Applications Laboratory)
CNUCE - Institute of CNR - via S. Maria, 36 - 56126 Pisa (Italy)

Phone: +39 (50) 593201 - FAX: +39 (50) 904052
E.mail: oreste@vm.cnuce.cnr.it

WPC’94
3rd Workshop on Program Comprehension

November 14-15, 1994
Washington D.C.

Reconstruction of
ER Schema

from Database
Applications:

a Cognitive Approach

Oreste Signore
Mario Loffredo - Mauro Gregori - Marco Cima

SEAL (Software Engineering and Applications Laboratory)
CNUCE - Institute of CNR - via S. Maria, 36 - 56126 Pisa (Italy)

Phone: +39 (50) 593201 - FAX: +39 (50) 904052
E.mail: oreste@vm.cnuce.cnr.it

ER ‘94
The Thirteenth International Conference

on

The Entity-Relationship Approach
Business Modelling and Re-Engineering

December 13-16 1994
Manchester, UK

Contents

p Data Base Reverse Engineering

• motivations

• related work

p The proposed methodology

• overall architecture

• three phases

• the “clued” approach

• the indicators’ matrix

p Conclusions

RDBRE - 1

Maintenance and Re-Engineering

Maintain Enhance

Discard Re-engineer

Changeability

Business value

2 Maintenance (corrective, adaptive or perfective):

• up to 95% of EDP department activity
• we must understand the program semantics and the basic design issues

ANALYSIS RESTRUCTURING

abstraction
Product

 New
product

Old
product

 Analyzed
product product

Structured

 R E F E
PHYSICAL LEVEL

LOGICAL LEVEL

RDBRE - 2

Database Reverse Engineering: WHY?

p More recent DBMS have new features
 - constraints can be defined at schema level

p Reverse Engineering towards Object-Oriented

p Database applications are very often of crucial

importance

p Recovering design issues

p The DBRE is faced with the following problem:

• given the DDL/host language expression of existing
data structures (global, schema and/or views)

• given known operational requirements (e.g. the DMS
performance requirements, etc.)

• find a possible conceptual schema that could lead to
these data structures

RDBRE - 3

Database Forward Engineering

p We must well understand the FE to perform an

effective reverse engineering process

p In FE we have several phases:

• mapping conceptual-logical
• optimisation of the logical schema
• mapping logical-physical
• translation of not directly supported specifications

p The sequence of transformations induces a

progressive degradation of the schema, that
becomes:

• less complete
• less simple
• less readable
• less expressive

RDBRE - 4

Database Reverse Engineering:
related work

p Restrictive hypotheses:

• requirements completely mapped onto data structures
and constraints

• strict application of the mapping rules
• user needs or environment constraints didn’t force any

further restructuring of the schema
• existence of a “naming policy”

p Batini, Ceri, Navathe
 (Batini C., Ceri S., Navathe S.B.: Conceptual Database Design: An Entity-

Relationship Approach,The Benjamin/Cummings Publishing Company,Inc.,
1992)

• simple and limited process
• a suitable initial model
• clear and linear description of the steps to follow to

analyse relations and identify the concepts
• a good semantic knowledge of the initial relational

schema is supposed

p Premerlani, Blaha
 (Premerlani W.J., Blaha M.R.: An Approach for Reverse Engineering of

Relational Databases, Proceedings IEEE Working Conference on Reverse
Engineering, Baltimore 1993) + CACM

• “experimental” point of view
• set of methods, techniques and practical examples
• large set of real cases

RDBRE - 5

 Database Reverse Engineering:
 related work (cont’d)

p Chiang, Barron, Storey
 (Chiang R.H.L., Barron T.M., Storey V.C.: Reverse engineering of

relational databases: Extraction of an EER model from a relational
database, Data & Knowledge Engineeering, Vol. 12, N. 2 (March 1994))

• takes information from the catalog and from the data
stored in the relations

p Hainaut, Chandelon, Tonneau, Joris
 Hainaut J-L., Chandelon M., Tonneau C., Joris M.: Contribution to a

Theory of Database Reverse Engineering,, Proceedings IEEE Working
Conference on Reverse Engineering, Baltimore 1993

• we can split the solving process in two main
subsequent phases:
• Data Structure Extraction (DSE)
 (the reverse of the physical phase)
• Data Structure Conceptualisation (DSC)
 (the reverse of the logical phase)

DDL/Host Lang.
expression of

schema & views

DMS-compliant
optimized schema

Possible conceptual
schema

Data structure
Conceptualization

(DSC)

Data structure
Extraction

(DSE)

RDBRE - 6

The DBRE process

RDBRE - 7

Some problems in
Data Base Reverse Engineering

p In the following databases, try to identify:

• domains’ identity
• IS-A hierarchies
• associative relations
• attributive relations

BOOKS (ID, TITLE, MAIN_AUT, PUBLISHER,…)
AUTHORS (ID, NAME,…)
SEC_AUTH (BOOK_ID, AUTH_ID)
STUDENT (ID, FSTNAME, LSTNAME, COURSE,…)
LOAN (ID, STUD_ID, BOOK_ID, DATE,...)

EMPLOYEE (EID, D1,…,Dn)
MANAGERS (EID, M1,…,Mp)
TECHNICIANS (EID, T1,…,Tq)
SECRETARIES (EID, S1,…,Sr)
SKILL(EID, SKILL, LEVEL)
ENGAGED (EID, PROJECT, PERCENTAGE)
PROJECT (P#, TITLE)

p We cannot simply rely on column names.

p To capture the semantics, we must consider how the applications make use of the data

RDBRE - 8

Architecture

p Implicit assumptions:

• a first phase of generation of SQL/procedural facts
• a second phase of generation of catalog facts

SQL/C
source code

Static code
analyzer

Generator of
catalog facts

Generator of
SQL/procedural

facts

User

TROOP
Information
Repository

Catalog

Prolog
Database

Deduction rules

RDBRE tool

Architecture of the RDBRE tool

RDBRE - 9

The RDBRE process

Detection
of the

primary keys

Detection
of the

indicators

Conceptualisation

Initial knowledge base

Primary keys
+

possible primary keys

Indicators

Conceptual schema

The DBRE process phases

p Phase 1: Identification of the primary keys

p Phase 2: Detection of the indicators

p Phase 3: Conceptualisation

RDBRE - 10

The indicators

p Definition of an indicator
 a set of information detectable from one or more available

sources (catalog, SQL code, output of a previous analysis
phase), that could characterise, in the conceptual model,
one or more relational schema items

p Classes of indicators:

• schema indicators
 taken from the catalog and the information deduced in

the key identification phase

• key indicators
 taken from the analysis of the primary keys
 help in defining the properties of the PK of a given relation

• SQL indicators
 taken from the analysis of the SQL commands
 give information about the kind of usage the DML statements make of

the table elements

• procedural indicators
 taken from the analysis of the host language code
 integrate the information supplied by the SQL indicators: made of

some typical (standard) patterns for conditional manipulation of the

database data

 Examples:

• fetch loops

• referential integrity constraints’ checking

• actions on tables implementing class hierarchies

RDBRE - 11

Identification of the primary keys:
generalities

p A trivial case if explicitly defined

p If we have only one index with the UNIQUE option

 PK can be identified as the attribute (or

attribute set) the index is defined upon

p If we have more than one index with the UNIQUE option

• we consider every set as a candidate key
• we calculate the frequencies of usage
• we ask the user to make a choice

p If we do not succeed in identifying a primary

or candidate key:
 we can identify some indicators by analysing

procedural patterns:

• at least one WHERE clause must mention all the columns
composing the potential key (a)

• no DML statement making use of these columns and
returning a set of tuples should exist (b-g)

RDBRE - 12

Identification of the primary keys:
the SQL patterns

 Pattern

a
WHERE a1=<scalar_exp1> AND…AND as=<scalar_exps>

b No declaration of a cursor like:
DECLARE <cursor_id> FOR
SELECT <selection>
FROM T
WHERE a1=<scalar_exp1> AND…AND as=<scalar_exps>

followed by
OPEN <cursor_id>

and a loop containing:
FETCH <cursor_id> INTO <list_of_host_var>

or:
No assignment of the selected tuples to an array.

c No statement contains:
SELECT ALL|DISTINCT <selection>
FROM T
WHERE a1=<scalar_exp1> AND…AND as=<scalar_exps>

d No statement contains:
SELECT <function-ref>
FROM T
WHERE a1=<scalar_exp1> AND…AND as=<scalar_exps>

where
function-ref::= COUNT(*) | distinct-function-ref | all-function-ref
distinct-function-ref::={AVG|MAX|MIN|SUM|COUNT}(DISTINCT column-ref)
all-function-ref::= {AVG|MAX|MIN|SUM|COUNT}([ALL]scalar-exp)

e No statement contains:
SELECT <selection>
FROM T
WHERE a1=<scalar_exp1> AND…AND as=<scalar_exps>
GROUP BY <column-ref-commalist>

or
SELECT <selection>
FROM T
WHERE a1=<scalar_exp1> AND…AND as=<scalar_exps>
ORDER BY <ordering-ref-commalist>

f No statement contains:
SELECT <selection>
FROM T
GROUP BY a1, a2,…, as

g No statement contains:
WHERE <scalar-exp> [NOT] IN <subquery>

or
WHERE <scalar-exp><comparison> ALL|ANY|SOME <subquery>

where <subquery> is like
SELECT <selection>
FROM T
WHERE a1=<scalar_exp1> AND…AND as=<scalar_exps>

RDBRE - 13

Second phase:
indicators’ detection

p First phase:

• PK identified
• hypotheses about PK formulated
• existence of candidate keys indicated

p Second phase:

• face the difficulties arising from the different semantic

richness of ER and relational model

• we must consider:

• mapping from an ER to a relational model is not unique
• optimisation choices
• poorness of the DDL
• unusual implementation techniques

• we must adopt a “clued” approach
 (a conceptualisation phase will follow)

• the steps:

• domains’ identification
• FK’s identification
• detection of integrity constraints
• analysis of integrity constraints

p Third phase (conceptualisation)

 suitable combinations of indicators can lead to the
identification of “probable concepts”

RDBRE - 14

RDBRE - 15

Domains’ identification

p No ambiguities, thanks to the usage of the

extended name:
tablename.attributename

p Identification of the attributes defined on the

same domain (synonyms):

• we can’t rely on identical types as defined in the

catalog:
 (SQL type checking is weak!)

 Es.
 Given the relations:

BOOKS (ID, TITLE, MAIN_AUT, PUBLISHER,…)
AUTHORS (ID, NAME,…)
SEC_AUTH (BOOK_ID, AUTH_ID)
STUDENT (ID, FSTNAME, LSTNAME, COURSE,…)
LOAN (ID, STUD_ID, BOOK_ID, DATE,...)

 only a query like:

SELECT NAME
FROM AUTHORS, BOOKS
WHERE AUTHORS.ID=BOOKS.MAIN_AUT AND BOOKS.PUBLISHER='X'

 or:
SELECT NAME
FROM AUTHORS
WHERE ID IN
 (SELECT MAIN_AUT
 FROM BOOKS
 WHERE PUBLISHER = 'X')

 can show that:

AUTHORS.ID, BOOKS.AUT synonyms

BOOKS.ID, STUDENT.ID, LOAN.ID,

AUTHORS.ID

not synonyms

RDBRE - 16

RDBRE - 17

 Domains’ identification (cont’d)

• some typical patterns

Type Pattern

equijoin

SELECT …
FROM T1, T2
WHERE …T1.ATTR = T2.ATTR'…

multiple
join

SELECT …
FROM T1, T2, T3,…

WHERE …T1.ATTR(1)=T2.ATTR1(2) AND

 T2.ATTR2(2)=T3.ATTR(3)…

nested
queries

SELECT …
FROM T1, …
WHERE …T1.ATTR [NOT] IN (SELECT T2.ATTR'
 FROM T2,…
 WHERE …)
or:
WHERE …T1.ATTR{=|•} (SELECT T2.ATTR'
 FROM T2,…
 WHERE …)

auto-join

SELECT A.STAFF_ID
FROM STAFF A, STAFF B
WHERE A.SALARY > B.SALARY AND A.SUPERVISOR =

 B.STAFF.ID

• some other cases of semantic equivalence:

INSERT INTO <table> (<column-commalist>)
SELECT <selection-commalist>
<table-exp>.

 (semantic equivalence of the corresponding attributes in
<column-commalist> and <selection-commalist>)

• the usage of host variables induces some additional

complexity (data dependences must be detected)

 SELECT NAME
 FROM AUTHORS A, BOOKS B
 WHERE A.ID = B.AUT AND B.TITLE = :book

 is equivalent to:
 SELECT AUT
 INTO :aut_code
 FROM BOOKS
 WHERE BOOKS.TITLE = :book
 . . .
 SELECT NAME
 INTO :aut_name
 FROM AUTHORS
 WHERE ID = :aut_code

RDBRE - 18

Foreign Keys

p Three steps

a) Annotate explicitly defined FK
 A trivial case

b) Identification of not explicitly defined FKs
 Given a relation T, having a primary key PK, we select the

synonyms of PK that all belongs to a relation T’.
 They are the components of a FK, defined in T’, that

references T.

c) Identification of the FKs that refer an uncertain PK
 For all the relations that only have a Possible Primary Key

(PPK) we apply the same procedure.
 The result is affected by the same uncertainty that affects

the PPK.

RDBRE - 19

Referential integrity constraints

p Identifying the referential integrity constraints

checking embedded in the code can help in
validating the ambiguous cases.

p Referential integrity constraints checking:

• in less recent DBMSs was a programmers’ task
• in more recent DBMSs can be defined at the schema

level (triggers)

p Identifying the procedural patterns that

implement the constraints’ checking can be of
valuable help in re-engineering phase

 (clean up of the code, homogeneity, etc.)

p An example
 (procedural pattern to assure the referential integrity when inserting a tuple

in the referencing table)

PROFESSORS (LSTNAME, FRSTNAME, BIRTHDATE,
ADDRESS,…)
COURSES (COURSE_ID, CLASSROOM,PROF_LSTNAME,
 PROF_FRSTNAME,PROF_BIRTHDATE,…)

EXEC SQL BEGIN TRANSACTION;
EXEC SQL
 SELECT *
 FROM PROFESSORS
 WHERE LSTNAME = :prof_lstname AND
 FRSTNAME = :prof_frstname AND
 BIRTHDATE = :date;
if (SQLCODE == 0)
 {
 EXEC SQL
 INSERT INTO COURSES (COURSE_ID,
 PROF_LSTNAME,PROF_FRSTNAME,
 PROF_BIRTHDATE)
 VALUES (:course, :prof_lstname,:prof_frstname
 :date);
 EXEC SQL COMMIT WORK;

RDBRE - 20

 }
else <call of the error_handling routine>

RDBRE - 21

Referential integrity constraints:
analysis

p Identifying FKs and referential integrity

constraints can help in recognising the
relationships.

p The procedural indicators can be used to:

• identify the FKs
• confirm or reject the hypotheses

p Some patterns are very similar:

CUSTOMERS (CUSTOMER_ID, COMPANY, COUNTRY,…)
AGENTS (AGENT_ID, …, ZONE).

EXEC SQL BEGIN TRANSACTION;
EXEC SQL
 SELECT *
 FROM CUSTOMERS
 WHERE COUNTRY = :zone;
if (SQLCODE == 0)
 {
 EXEC SQL
 INSERT INTO AGENTS (AGENT_ID,…, ZONE)
 VALUES (:agent,…, :zone);
 EXEC SQL COMMIT WORK;
 }
else <call of the error_handling routine>

 this pattern implements a constraint, but not a referential
integrity constraint, as the existence check is performed
on a non-key field

RDBRE - 22

Referential integrity constraints:
the checking algorithm

1

2

3

4

56

T F

T

TT

F

F F

LEGENDA
T_ed: referenced table
K_ed: referencede key
T_ing: referencing table
K_ing: referencing key

Detection of a
control pattern

Assertion
foreign_key(T_ing, K_ing, T_ed)

possible_primary_key(T_ed, K_ed)

Assertion
possible_foreign_key(T_ing, K_ing, T_ed)

Confirmation of:
• primary_key(T_ed, K_ed)
• foreign_key(T_ing, K_ing, T_ed)

K_ed = P

Annotate the control of
a dynamic constraint

∃ F: possible_foreign_key(T_ing, F, T_ed)
and K_ing = F

∃ P:
primary_key(T_ed, P)

Annotate the presence of the control:
• it could be a control of a dynamic
 constraint
• it could be wrong the fact
 possible_primaty_key(T_ed, K)
 where K ° K_ed

RDBRE - 23

Third phase: conceptualisation

p A simple and extensible paradigm:

 the indicators’ matrix

• rows correspond to ER concepts
 (with or without direct mapping)

• columns corresponds to indicators’ categories

• every cell Cij contains the indicator of Classj, that can

be used for the identification of the Concepti

p Preceding phases populate the cells making

use of:
• Models and mapping rules knowledge
• practical knowledge deduced from the implementation

experience

p Quality and quantity of the indicators affect the concepts’ identification.

RDBRE - 24

The indicators’ matrix

RDBRE - 25

The indicators’ matrix

RDBRE - 26

The IS-A hierarchies

EMPLOYEE

TECHNICIANSSECRETARIESMANAGERS

Conceptual schema

EMPLOYEE (EID, D1,…,Dn)
MANAGERS (EID, M1,…,Mp)
TECHNICIANS (EID, T1,…,Tq)
SECRETARIES (EID, S1,…,Sr)

The relations’ schemas

EXEC SQL
 INSERT INTO EMPLOYEE (EID, D1,…,Dn)
 VALUES (:id, :d1,…,:dn);
switch (role)
{
 case '01':
 EXEC SQL
 INSERT INTO MANAGERS (EID, M1,…,Mp)
 VALUES (:id, :m1,…,:mp);
 break;
 case '02':
 EXEC SQL
 INSERT INTO TECHNICIANS (EID, T1,…,Tq)
 VALUES (:id, :t1,…,:tq);
 break;
 case '03':
 EXEC SQL
 INSERT INTO SECRETARIES (EID, S1,…,Sr)
 VALUES (:id, :s1,…,:sr);
 break;
}

A typical insertion pattern for a disaggregate hierarchy

RDBRE - 27

 The IS-A hierarchies (cont.)

EMPLOYEE

TECHNICIANSSECRETARIESMANAGERS

Conceptual schema

EMPLOYEE (EID, D1,…, Dn, M1,…, Mp, T1,…, Tp,S1,…, Sr)

The relation’s schema

switch (role)
{
 case '01':
 EXEC SQL
 INSERT INTO EMPLOYEE (EID, D1,…,Dn, M1,…,Mp)
 VALUES (:id, :a1,…,:an, :m1,…,:mp);
 break;
 case '02':
 EXEC SQL
 INSERT INTO EMPLOYEE (EID, D1,…,Dn, T1,…,Tq)
 VALUES (:id, :a1,…,:an, :t1,…,:tq);
 break;
 case '03':
 EXEC SQL
 INSERT INTO EMPLOYEE (EID, D1,…,Dn, S1,…,Sr)
 VALUES (:id, :a1,…,:an, :s1,…,:sr);
 break;
}

A typical insertion pattern for an aggregate hierarchy

RDBRE - 28

Associations’ detection

Type Pattern Feature
Schema NULL <foreign_key>

NOT ALLOWED IN <table>

total association

Schema NULL <foreign_key> ALLOWED IN

<table>

partial association

SQL SELECT …

FROM …, T,…

WHERE …T.FK IS [NOT] NULL

partial association

SQL Joins FK-PK have clauses:

FROM T

WHERE FK1=:host_var1 AND…AND

FKn=:host_varn

or

FROM T, T'

WHERE T.FK1 = T’.PK1 AND…AND

T.FKn=T’.PKn

multiple association

Typical patterns for the detection of the associations

RDBRE - 29

Conclusion

p As the DB Conceptual Schema is semantically

much richer than the Physical DB Schema,
when reconstructing an ER schema we must
look at the constraints that are maintained at
the procedural level, too.

p More recent DBMSs offer enhanced

possibilities for defining and maintaining the
constraints.

p We described a RDBRE methodology that

makes use of information taken from:
• catalog
• source code

p Innovative aspects:

• interpreting how applications make use of the data
• using procedural patterns

p Pros:

• the “cognitive” approach
• easy recognition of new patterns

p Limitations:
• the methodology must be refined
• no user friendly interface at present

p A prototype has been implemented

p Future developments:

RDBRE - 30

• integration in TROOP: a reverse engineering tool under
development

RDBRE - 31

