
CSS 2.1 Primer

© Oxford Brookes University 2003

Contents

l 1. Introduction
¡ 1.1 Content and Style
¡ 1.2 HTML Structure
¡ 1.3 CSS Attachment to Pages
¡ 1.4 CSS Main Facilities
¡ 1.5 Browser Support
¡ 1.6 CSS 1 Specification

l 2. CSS 1 Rules
¡ 2.1 Introduction
¡ 2.2 Syntax for CSS Properties

l 3. Length, Percentage, Color and URLs
¡ 3.1 Introduction
¡ 3.2 Length Values
¡ 3.3 Percentage values
¡ 3.4 Color Values
¡ 3.5 URLs
¡ 3.6 CSS 1 Specification

l 4. Font Properties
¡ 4.1 Font Family (Sets typeface)
¡ 4.2 Font Style (Italicises text)
¡ 4.3 Font Variant (Mostly upper case)
¡ 4.4 Font Weight (Sets thickness of type)
¡ 4.5 Font Size (Sets size of text)
¡ 4.6 Font (Shorthand)

l 5. Color and Background Properties
¡ 5.1 Color
¡ 5.2 Background Color
¡ 5.3 Background Image
¡ 5.4 Background Repeat
¡ 5.5 Background Attachment
¡ 5.6 Background Position
¡ 5.7 Background (Sets background images or color)

l 6. Text Properties
¡ 6.1 Word Spacing
¡ 6.2 Letter Spacing
¡ 6.3 Text Decoration (Underlines or otherwise highlights text)
¡ 6.4 Vertical Alignment
¡ 6.5 Text Transformation
¡ 6.6 Text Alignment (Sets justification)
¡ 6.7 Text Indentation (Sets distance from left margin)
¡ 6.8 Line Height

-- ii --
© Oxford Brookes University 2003

l 7. Box Properties
¡ 7.1 Introduction
¡ 7.2 Margin Setting
¡ 7.3 Padding Setting
¡ 7.4 Border Setting
¡ 7.5 Border Color
¡ 7.6 Border Style
¡ 7.7 Setting All Border Properties Together
¡ 7.8 Width and Height of Images
¡ 7.9 Float
¡ 7.10 Clear

l 8. Classification Properties
¡ 8.1 Display
¡ 8.2 Whitespace
¡ 8.3 List Style Type
¡ 8.4 List Style Image
¡ 8.5 List Style Position
¡ 8.6 List Style

l 9. Structure and Control
¡ 9.1 Introduction
¡ 9.2 Classes
¡ 9.3 Identifiers
¡ 9.4 Contextual Selectors
¡ 9.5 Grouping
¡ 9.6 Universal Selector
¡ 9.7 Attribute Selectors
¡ 9.8 Comments
¡ 9.9 The elements div and span

l 10. Pseudo-classes and Pseudo-elements
¡ 10.1 Introduction
¡ 10.2 Anchor Pseudo-class
¡ 10.3 First Line Pseudo-element
¡ 10.4 First Letter Pseudo-element
¡ 10.5 Context Pseudo-elements

l 11. Linking Style Sheets to HTML
¡ 11.1 Linking to an External Style Sheet
¡ 11.2 Embedding a Style Sheet
¡ 11.3 Importing a Style Sheet
¡ 11.4 Inlining Style
¡ 11.5 Mixing Methods

l 12. Cascading Order
l 13. Layout and Media

¡ 13.1 Positioning
¡ 13.2 Media
¡ 13.3 Printing
¡ 13.4 Aural Output

l 14. Tables
¡ 14.1 Two Models

-- iii --
© Oxford Brookes University 2003

Appendices

l A. References
l B. Quick Reference Guide

¡ B.1 Syntax
¡ B.2 Definitions
¡ B.3 Properties

l C. CSS Colour Keywords

-- 1 --
© Oxford Brookes University 2003

1. Introduction

l 1.1 Content and Style
l 1.2 HTML Structure
l 1.3 CSS Attachment to Pages
l 1.4 CSS Main Facilities
l 1.5 Browser Support
l 1.6 CSS 1 Specification

1.1 Content and Style
Two aspects of any document are content and style. The content gives the information to be presented
and the style defines how the information is presented. Most publishers have a House Style that is a
consistent way of presenting information. The same information printed by two publishers may look quite
different. This Primer describes the basic features of Cascading Style Sheets (CSS for short) which is
the primary styling language used with HTML.
HTML's main role is to define content. What is needed is the ability for publishers to have control of
style. In the context of the Web, the publisher can be the organisation that owns the Web site but it can
also be the person viewing the information. It is only by having a clear separation between content and
style that this can be achieved. So in this Primer we shall use HTML in most of the examples as a
means of defining the content and CSS to define the style.
CSS is a World Wide Web Consortium (W3C) Recommendation. That means that all the W3C Members
(which includes all the main browser manufacturers) have agreed to support it in their products. That
does not necessarily mean immediately as each has its own production schedule for enhancements to
its products but long term all should support all of the features. CSS first became a W3C
Recommendation in 1996 (called CSS 1) and there was a significant update in May 1998 (called CSS
2). Not all of the facilities in CSS 2 were implemented by all manufacturers. A new version is under
development called CSS 2.1 that corrects some errors found in CSS 2 and either removes or makes
optional those features not supported. It also adds some features that people required (particularly for
XML) that were not in CSS 2.
With the ever increasing use of the Web by a large variety of devices, there is a need to profile facilities
in specifications like CSS so that a device with limited capabilities can support a consistent subset.
Towards this goal, CSS 3 will be divided into a set of modules with profiles aimed at devices like mobile
phones, PDA, televisions etc. This work was goes under the general heading of CSS 3. Some modules
are near completion while others still have significant work to be done on them. It is still under
development and will not be considered further in this Primer. This Primer aims to describe the main
facilities available in CSS 2.1
HTML allows a Web page to be laid out and there is some guidance to browsers as to how to represent
each element. Thus, h1 should be larger than h2 and em should be emphasised by some method but
that is as far as it goes.
The aim of Cascading Style Sheets (CSS) is to give the page developer much more control on how a
page should be displayed by all browsers.
A style sheet is a set of rules that controls the formatting of HTML elements on one or more Web
pages. Thus, the appearance of a Web page can be changed by changing the style sheet associated
with it. There is no need to make detailed changes within the Web page to change how it looks.
Some of the advantages of using style sheets are accessibility, different styling can be provided for
different users dependent on their requirements. Separating style and content is good design and will
normally produce a better and more consistent web site. As one style sheet can be used for a whole
web site, it normally means that the overall size of the web site is smaller and the downloads required
for each page can be decreased by up to 40%. Allwoing browsers to make overall decisions on styling
often means that the rendering time by the browser is also shorter. We shall see how styling can
radically effect a page's layout and this allows important information to appear early in the HTML markup
of the page even if the design requires it to appear later. This can be of use to search engines.
A set of Web pages may use a common style sheet. A Web page may have its own style sheet that
refines the information in the common style sheet. Readers may define their own style sheet indicating
their preferences. Thus style sheets cascade and decisions need to be made as to which style sheet is
in control when there is a conflict. But more of that later.

-- 2 --
© Oxford Brookes University 2003

A style sheet rule consists of two parts. A selector that defines which HTML elements are controlled by
the rule and a declaration that says what the required effect is. Thus a simple rule is:

h1 { color: blue }

This says that all h1 elements in a page should be displayed in blue. The selector is h1. color is the
property that is to be changed, blue is the value that the property is changed to and color: blue is the
declaration.

1.2 HTML Structure
HTML elements in the body of the document fall into two main classes:

1. Block-level
2. Inline (sometimes called character-level)

Figure 1.1: Block level and Inline Elements

Lists and tables are special types of elements that have their own unique styling.
When a block-level element is inserted into a document, it terminates the previous element and
effectively starts a new line. Some examples are <p> and <h1>. Inline elements do not terminate the
previous element and form part of the previous element; em is an example.
The body of an HTML page contains text marked-up using block-level elements (h1, p, ul, div etc).
Each block-level element has an area which contains the content. For a p element, this is the area that
contains the whole paragraph while for h1 it is often an area consisting of a single line of text. CSS
provides facilities for controlling where that area is placed relative to other areas.

-- 3 --
© Oxford Brookes University 2003

The inline elements often inherit the style of the block-level element that they are part of but can be
given special styling appropriate to the inline element. For example:

<h1>My Title</h1>
<p>This is a paragraph that I am using to illustrate
a block-level element
with some em elements in it showing
how inline elements are handled.</p>
<h2>My Sub-title</h2>
<p>And this is the start of my next paragraph . . .</p>

Figure 1.1 shows the areas covered by the block level elements and the sub-areas covered by the inline
elements. The inline elements have been given their own background colour, colour, font-weight (bold)
and font style (italic) while inheriting the text size and font from the enclosing paragraph.

1.3 CSS Attachment to Pages
There are four ways of linking a style sheet to an HTML page:

1. By defining a link from the HTML page to the style sheet (normally stored in a xxx.css file). This
allows you to have a single style sheet that changes the appearance of many Web pages.

2. By specifying an HTML style element in the head of the page. This allows you to define the
appearance of a single page.

3. By adding inline styles to specific elements in the HTML file by the style attribute. This allows you
to change a single element or set of elements. This should only be used when absolutely
necessary as it negates some of the advantages of having style sheets. It effectively over-rides
the overall style for the page. Also, it is likely that it will be removed from CSS 3.

4. By importing a style sheet stored externally into the current style. The style element for the page
can consist of a set of imports plus some rules specific to the page.

Initially, while you are experimenting, the simplest method is to use the HTML style element to add a
style sheet to an HTML page. The style element, consisting of a set of rules, is placed in the document
head.
When you have decided on your house style, it is likely that you will move to having the style sheet
external to an individual page and either linked in or imported.

1.4 Main Facilities
The facilities provided by style sheets are much as you would expect:

1. Better control of fonts including colour
2. Better control of block-level layout (indents, margins, alignment etc)
3. Better control of inline layout, particularly with regard to diagrams and related text

1.5 Browser Support
To achieve these effects, the Web browser has to know what to do with style sheets. Really old
browsers will not have this capability but the recent offerings from Microsoft, Opera and Netscape have
good support now and are committed to full support in the future. HTML Editors are beginning to have
Style Sheet additions and separate Style Sheet Editors are appearing. Visit the W3C CSS Web Page [1]
for all the latest information.
Given the way CSS has been implemented, it is possible to design your web pages so that they still
present the HTML information even when CSS support is not there. So there is little excuse for not
adding style to your web pages now even if you expect your pages are to be viewed by really old
browsers.

1.6 CSS Specification
This Primer will not tell you everything about CSS. If you get to the position where you really need to
know precisely what happens in some subtle situation, you need to consult the formal specification that
can be found on the World-Wide Web Consortium's web site [2] [3].
To make it as easy as possible to relate the specification to the Primer, the order of presentation here is
similar to the order in the Specification.

-- 4--
© Oxford Brookes University 2003

2. CSS Rules

l 2.1 Introduction
l 2.2 Syntax for CSS Properties

2.1 Introduction
Let us assume initially that we wish to define a style sheet by adding a style element to a page. The
page will look something like:

<html>
<style type="text/css">
h1 {font: 12pt/14pt "Palatino"; font-weight: bold; color: red}
h2 {font: 10pt/12pt "Palatino"; font-weight: bold; color: blue}
p {font: 10pt/12pt "Times"; color: black}
</style>
<body>
...
</body>
</html>

The set of rules are contained between <style> and </style>. Ignore the type attribute, for now. The
reason for this will be come clearer later. For now let us concentrate on the rules. As stated in the
introduction, each rule consists of two parts: a selector that defines what HTML elements are controlled
by the rule and a declaration that says what the required effect is. The selectors above define three
rules that apply to all h1 elements, all h2 elements and all p elements respectively. We shall show how
we can be both more selective (control a subset of h1 elements) or control a set of elements (a block of
different HTML elements) later. Initially let us look at the declarations. Each declaration consists of the
name of a property and the value to be assigned to it. So the simplest style rule is:

selector { property: value }

To set several properties in a single rule requires the individual declarations to be separated by
semicolons:

selector { property1: value1; property2: value2; property3: value3 }

-- 5 --
© Oxford Brookes University 2003

2.2 Syntax for CSS Properties
Sections 4 to 8 define the CSS properties that can be set. The general format for each sub-section is for
the title to give a descriptive name followed immediately by the syntax definition (in BNF style) for the
property declaration. For example:

font-weight: <value>

This says that the name of the property is font-weight and <value> is assigned to it. In the CSS
specification, the possible values of <value> are defined. In this Primer, sometimes only a sample of the
possible values are given to give an idea of what is possible rather than exhaustively list them all.
In BNF, the notation could be written:

<font-weight> ::= font-weight: <value>

This style is used if, for example, the definition of <value> needs to be given separately.
Some of the syntax definitions can be quite complicated. The notation used is as follows:

Notation Meaning

<Abc> A value of type Abc. Some of the more common types are discussed later.

abc A keyword that must appear exactly as written.

X Y Z X must occur then Y then Z in that order.

X | Y Xor Y must occur.

X || Y || Z X, Y or Z or some combination in any order.

[Abc] The square brackets are used to group items together.

ST* ST is repeated zero or more times. ST can be a bracketed set of items.

ST+ ST is repeated one or more times.

ST? ST is optional. It can either appear once or not at all.

ST {A,B} ST must occur at least A times and at most B times.

-- 6 --
© Oxford Brookes University 2003

3. Length, Percentage, Color and URLs

l 3.1 Introduction
l 3.2 Length Values
l 3.3 Percentage values
l 3.4 Color Values
l 3.5 URLs
l 3.6 CSS Specification

3.1 Introduction
Four values (<length>, <percentage> , <color>, <url>) are used by many of the rules. They are
explained in this section.

3.2 Length Values

<length> ::= [+ | -]? <number> <unit>

A length value is formed by an optional + or -, followed by a number, followed by a two-letter
abbreviation that indicates the unit (this can be left out if the value is 0). There are no spaces in the
middle of a length value.
Both relative and absolute length units are supported in CSS. Relative units give a length relative to
another length property. The relative length units are:

CSS recommends that the pixel unit px should be regard as the smallest unit of resolution. So if you
were reading information on the display at arms length distance away, it should be approximately
0.28mm or 1/90th of an inch. Consequently, a measurement of 12pt and 15px should be about the
same.
The absolute length units are:

Lengths such as pt and in are converted to pixels using the user agent's guess. So which units should
you use in defining a Style Sheet? There is no real correct answer as it depends on what is the main
output device and whether you would like to change the whole Style sheet by just applying a single
change. In the Lie and Bos book [4}, a strong recommendation is made to use ems. If the user has set
the browser up to use 10pt type for displaying Web pages, then setting the h1 font size to 2em will
ensure that the font-size is 20pt in size. If another user sets the browser normal font size to be 12pt, the
h1 element will have a 24pt font size.

Unit Meaning

em Historically width of letter M, but in CSS it equals the font height (if font is 12pt
then 1em=12pt)

ex x-height: the height of the letter x which varies between fonts (a 12pt Times
Roman 'ex' will be bigger than a 12pt Baskerville 'ex')

px pixels: in CSS the pixel is equal to one pixel on a normal computer display. So if
the output is to go to a 1200dpi laser printer, the browser will take 1 pixel to
mean about 12 laserprinter pixels.

Notation Meaning

in inches

cm centimetres

mm millimetres

pt Printing industry point; originally there was 72pt to a French inch which was
larger than an English inch! Postscript and CSS define 1pt=1/72in

pc picas; 1pc=12pt

-- 7 --
© Oxford Brookes University 2003

The x-height of a font is critical to legibility. A 12pt font with a small x-height will be less readable than
one with a larger x-height. Inches and millimetres depend on the browser knowing the size of the display
being used. If I have a portable with a small display and attached to it is a much larger screen, what is
an inch. Well the browser has to make a decision with some help from the user.
In summary, absolute units are not really absolute and relative units are not always relative. The only
real recommendation that can be made is be careful if you plan to mix units and especially if you mix
absolute and relative ones.

3.3 Percentage Values

<percentage> ::= [+ | -]? <number> %

A percentage value is formed by an optional + or -, followed by a number, followed by %. There are no
spaces in a percentage value.
Percentage values are relative to other values, as defined for each property. Often the percentage value
is relative to the element's font size but it might be the width of the page.

3.4 Color Values

<color> ::= <keyword> | # <hex> <hex> <hex> | # <hex> <hex> <hex> <hex> <hex>
<hex> |
rgb (<int> <int> <int>) | rgb (<percentage. <percentage > <percentage>)

A color value is a keyword or a numerical RGB specification. The original set of keyword colours was
aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white and
yellow. These have been enhanced as a result of the requirements from other specifications. The set of
keywords with the corresponding RGB values given in Appendix C are likely to be supported by a
browser.
RGB colours can be defined in one of four ways:

1. #rrggbb(e.g., #00ff00)
2. #rgb (e.g., #0f0)
3. rgb(x,x,x) where x is an integer between 0 and 255
4. rgb(y%,y%,y%) where y is a number between 0.0 and 100.0

The following examples all specify the same colour:

pre { color: red }
h1 { color: #foo }
p { color: #ff0000 }
h2 { color: rgb(255,0,0) }
h3 { color: rgb(100%, 0%, 0%) }

Values outside the range are clipped. So, for example, integer values have a maximum of 255 and
everything above that will be changed to 255. Similarly 120% is interpreted as 100%.

-- 8 --
© Oxford Brookes University 2003

3.5 URLs

<url> ::= url(<whitespace>? [' | "]? <characters in url> [' | "]? <whitespace>)

A URL value is of the form:
url(xyz)
where xyz is the URL. The URL may be quoted with either single (') or double (") quotes and may have
whitespace before the initial quote or after the final quote.
Parentheses, commas, spaces, single quotes, or double quotes in the URL must be escaped with a
backslash. Partial URLs are interpreted relative to the style sheet source, not to the HTML source.
Some examples are:

body { background: url("circle.gif") }
body { background: url("http://www.clrc.images/monkey.gif") }

-- 9 --
© Oxford Brookes University 2003

4. Font Properties

l 4.1 Font Family (Sets typeface)
l 4.2 Font Style (Italicises text)
l 4.3 Font Variant (Mostly upper case)
l 4.4 Font Weight (Sets thickness of type)
l 4.5 Font Size (Sets size of text)
l 4.6 Font (Shorthand)

4.1 Font Family (set typeface)

font-family: [<family-name> | <generic-family>] [, [<family-name> | <generic-family>]]*
<family-name> ::= serif | sans-serif | cursive | fantasy | monospace

The font to use is set by the font-family property. Instead of defining a single font, a sequence of fonts
should be listed. The browser will use the first if it is available but try the second and so on. The value
can either be a specific font name or a generic font family.
Good practice is to define one or two specific fonts followed by the generic family name in case the first
choices are not present. Thus a sample font-family declaration might look like this:

p { font-family: "New Century Schoolbook", Times, serif }

Any font name containing spaces (multiple words) must be quoted, with either single or double quotes.
That is why the first font name is quoted but Times is not.
The first two requests are for specific fonts New Century Schoolbook and Times. As both are serif
fonts, the generic font family listed as a backup is the serif font family. In this case, Times will be used if
New Century Schoolbook is not available, and a serif font if Times is not available.
Some example fonts are:

serif
Times New Roman, Bodini, Garamond

sans-serif
Trebuchet, Arial, Verdana, Futura, Gill Sans, Helvetica

cursive
Poetica, Zapf-Chancery, Roundhand, Script

fantasy
Critter, Cottonwood

monospace
Courier, Courier New, Prestige, Everson Mono

See also the font property which lets the user define a set of font properties in a single command..

4.2 Font Style (italicise text)

font-style: normal | italic | oblique

The font-style property has one of three values: normal, italic or oblique (slanted). A sample style
sheet might be:

h3 { font-style: italic }
p { font-style: normal }

Italic and oblique are similar. Italic is normally a separate font while oblique often bends the normal
font.

-- 10 --
© Oxford Brookes University 2003

4.3 Font Variant (size of upper case)

font-variant: normal | small-caps

Normally, upper case characters are much larger than the lower-case characters. Small-caps are often
used when all the letters of the word are in capitals. In this case the upper case characters are only
slightly larger than the lowercase ones. An example is:

p { font-variant: small-caps }

For example, the text Elephant with font-variant set to small-caps would appear as ELEPHANT.

4.4 Font Weight (set thickness of type)

font-weight: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 |
900

The font-weight property sets the weight of the font to values like normal and bold. It also has values
bolder and lighter which are relative to any inherited font -weight. Block-level elements are displayed
with default values inherited from the body or div element that surrounds it. It is also possible to define
absolute font-weights. Values range from 100 to 900 with normal being 400 and bold being 700
approximately. If that much control is not possible, some of the weights may be grouped together (for
example, 100, 200 and 300 may all look the same) and if the specified weight is not available, an
alternative value will be chosen. Some examples are:

h1 { font-weight: 800 }
h2 { font-weight: bold }
h3 { font-weight: 500 }
p { font-weight: normal }

4.5 Font Size (set size of text)

font-size: <absolute-size> | <relative-size> | <length> | <percentage>

<absolute-size> ::= xx-small | x-small | small | medium | large | x-large | xx-large
<relative-size> ::= larger | smaller

The font-size property sets the size of the displayed characters. The absolute-size values are small,
medium and large with additional possibilities like x-small (extra small) and xx-small. Relative sizes
are smaller and larger. They are relative to any inherited value for the property. The length value
defines the precise height in units like 12pt or 1in. Percentage values are relative to the inherited value.
Some examples are:

--11 --
© Oxford Brookes University 2003

h1 { font-size: large }
h2 { font-size: 12pt }
h3 { font-size: 5cm }
p { font-size: 10pt }
li { font-size: 150% }
em { font-size: larger }

The guidance is that the medium font should be around 10pt so, in this case li and em might be similar
in size.

4.6 Font (Shorthand)

font: [<font-style> || <font-variant> ||
<font-weight>]? || <font-size> [/<line-height>]? || <font-family>]

The font property may be used as a shorthand for the various font properties, as well as the line-height.
For example:

p { font: italic bold 12pt/14pt Times, serif }

specifies paragraphs with a bold and italic Times or serif font with a size of 12 points and a line height of
14 points. Note: The order of attributes is significant: the font weight and style must be specified before
the others.

-- 12 --
© Oxford Brookes University 2003

5. Color and Background Properties

l 5.1 Color
l 5.2 Background Color
l 5.3 Background Image
l 5.4 Background Repeat
l 5.5 Background Attachment
l 5.6 Background Position
l 5.7 Background (Sets background images or color)

5.1 Color

color: <color>

The color property sets the foreground colour of a text element. See Section 3.4 for color values. For
example:

h1 {color: blue }
h2 {color: rgb(255,0,0) }
h3 {color: #0F0 }

5.2 Background Color

background-color: <color> | transparent

The background-color property sets the background colour of an element. For example:

body { background-color: white }
h1 { background-color: #000080 }

The value transparent indicates that whatever is behind the element can be seen. For example if the
background to the body element was specified as being red, a block-level element with background-
color set to transparent would appear with a red background.

5.3 Background Image

background-image: <url> | none

The background-image property sets the background image of an element. For example:

body { background-image: url("/images/monkey.gif") }
p { background-image: url("http://www.cclrc.com/pretty.png") }
h1 { background-image: none }

-- 13 --
© Oxford Brookes University 2003

When a background image is defined, a compatible background colour should also be defined for those
users who do not load the image or to cover the case when it is unavailable. If parts of the image are
transparent, the background colour will fill these parts. For example:

<ul style="background-image:url('wall.png')">
An item
Another
And third

Figure 5.1 shows what might be the result depending on the font-size and other properties specified for
the list.

Figure 5.1: List with background-image

5.4 Background Repeat

background-repeat: repeat | repeat-x | repeat-y | no-repeat

If the background image does not fill the whole element area, this description specifies how it is
repeated. The repeat-x value will repeat the image horizontally while the repeat-y value will repeat the
image vertically. Setting background-image to repeat will repeat the image in both x and y directions.
For example:

-- 14 --
© Oxford Brookes University 2003

body { background-image: url(/images/monkey.gif) }
body { background-repeat: repeat-x }

In the above example, the monkey will only be tiled horizontallya as shown in Figure 5.2.

Figure 5.2: Monkey tiled horizontally

5.5 Background Attachment

background-attachment: scroll | fixed

The background-image may be pasted on to the screen of the display in which case, when the elements
that it is associated with move, they will be on top of a different part of the image. The alternative is that
the background image is attached to the element, in which case, when the element moves, the
background stays the same. The background-attachment value of scroll indicates that the background
moves with the content, while fixed indicates it is fixed. For example, the following specifies a fixed
background image:

body { background-image: url("monkey.jpg") }
body { background-attachment: fixed }

This tends to be mainly useful if the background image is attached to the body element. If the page is
very long and the user has to scroll down the page to see the bottom, the background will remain fixed if
background-attachment is set to fixed. For most other uses, the default value of scroll makes more
sense.

-- 15 --
© Oxford Brookes University 2003

5.6 Background Position

background-position: [percentage> | length]{1,2} |
[[top | center | bottom] || [left | center | right]]

The effect of the background-image (especially when it is repeated) will depend significantly on the
origin of the image relative to the display (in fixed attachment) and relative to the element (in scroll
attachment).
The background-position property gives the initial position of the background image relative to the
display or element depending on the attachment mode.
The easiest way to assign a background position is with the keywords:

l Horizontal: left, center, right
l Vertical : top, center, bottom

The background position defines a point on the image that coincides with a position on the area it is to
be mapped onto. So top left says that the top left of the image coincides with the top left of the area and
so on.
Percentages and lengths may also be used to assign the position of the area and background image.
When using percentages or lengths, the horizontal position is specified first, followed by the vertical
position. Thus 20% 50% specifies that the point 20% across and 50% down the image is placed at the
point 20% across and 50% down the area.
If only the horizontal value is given, the vertical position is assumed to be 50%.
The keywords are interpreted as follows:

Notation Notation Notation Meaning

top left left top 0% 0%

top top center center top 50% 0%

right top top right 100% 0%

left left center center left 0% 50%

center center center 50% 50%

right right center center right 100% 50%

bottom left left bottom 0% 100%

bottom bottom center center bottom 50% 100%

bottom right right bottom 100% 100%

-- 16 --
© Oxford Brookes University 2003

5.7 Background (set background images or color)

background: [<background-color> || <background-image> || <background-repeat> ||
<background-attachment> || <background-position>]

The background property is a shorthand for the background-related properties. Some examples are:

body { background: white url(http://www.clrc/xyz.gif) }
p { background: url(../backgrounds/lion.png) #F0F000 fixed }
h1 { background: #0F0 url(grass.jpg) no-repeat bottom left }
ul { background: white url('monkey.jpg') repeat scroll 0% 50%}

A value not specified will receive its default value (see Appendix B). For example, the first two rules
above will have the background-position set to top left. The result of the fourth example is shown in
Figure 5.3. As the image covers the complete area, the white background will only be seen if the user
chooses not to download the image.

Figure 5.3: Monkey tiled and position center vertically

-- 17 --
© Oxford Brookes University 2003

6. Text Properties

l 6.1 Word Spacing
l 6.2 Letter Spacing
l 6.3 Text Decoration (Underlines or otherwise highlights text)
l 6.4 Vertical Alignment
l 6.5 Text Transformation
l 6.6 Text Alignment (Sets justification)
l 6.7 Text Indentation (Sets distance from left margin)
l 6.8 Line Height

6.1 Word Spacing

word-spacing: normal | <length>

The word-spacing property defines additional spacing between words. Negative values are permitted
which allows the letters to be closed up or even overlap. Word spacing may be influenced by alignment.
See Section 3.2 for a definition of <length>. For example:

p { word-spacing: 0.4em }
h1 { word-spacing: -0.2em }
h2 { word-spacing: normal }

6.2 Letter Spacing

letter-spacing: normal | <length>

The letter-spacing property defines additional spacing between characters. Negative values are
permitted. A value of normal will still allow justification to take place. A setting of 0 is defined as
preventing justification. For example:

h {letter-spacing: 0.2em }
p {letter-spacing: -0.1cm }

Figure 6.1 gives examples of the effect of additional letter spacing and word spacing.

-- 18 --
© Oxford Brookes University 2003

Figure 6.1: Word and Letter Spacing

6.3 Text Decoration (underlines, or otherwise highlights text)

text-decoration: none | [underline || overline || line-through || blink]

The text-decoration property defines how text is decorated. One or more settings can be made. For
example:

h3 { text-decoration: underline blink }

6.4 Vertical Alignment

vertical-align: baseline | sub | super | top | text-top | middle | bottom | text-bottom |
<percentage>

The vertical-align property defines the vertical positioning of an inline element (such as some text or
even an image) relative to the current baseline. It could be used to produce x2. The letter x in this case
would be called the parent and the power 2 would be called the child.
The value may be a percentage of the element's line-height property. It specifies how much the
element's baseline is raised above the parent's baseline. Negative values are permitted.
The other values are given in the following table.

-- 19 --
© Oxford Brookes University 2003

Each font will have well-defined values for the aspects of the font defined in Figure 6.2 to aid it in
achieving the various effects required for vertical alignment.

Figure 6.2: Font Aspects

The vertical-align property is also useful for aligning images. Some examples are:

em { vertical-align: 10% }
img { vertical-align: middle }

Notation Meaning

baseline aligns baselines of element and with the parent's baseline

middle aligns vertical midpoint of element with parent's baseline plus half the x-height
(height of letter "x") of the parent

sub subscripts the element

super superscripts the element

text-top aligns tops of element and top of parent element's font

text-bottom aligns bottoms of element and bottom of parent element's font

top aligns top of element with tallest element on the line

bottom aligns bottom of element with lowest element on the line

-- 20 --
© Oxford Brookes University 2003

6.5 Text Transformation

text-transform: capitalize | uppercase | lowercase | none

The text-transform property allows text to be transformed by one of four properties:

Examples:

h1 { text-transform: uppercase }
h2 { text-transform: capitalize }

For example, the text-transform property allows an organisation to define a house style for its
documents irrespective of author preferences. The authors can have their own view of whether titles
should be capitalized or not but the corporate house-style that is applied to all documents could use the
text-transform property to insist on a particular style.

6.6 Text Alignment (set justification)

text-align: left | right | center | justify

The text-align property defines the horizontal alignment of text. For example:

h1 { text-align: center }
h2 {text-align: left }
h3 {text-align: right }
p {text-align: justify }

6.7 Text Indentation (set distance from left margin)

text-indent: <length> | <percentage>

The text-indent property defines the amount of indentation that the first line of the element has. A
percentage refers to the parent element's width. A common use is for indenting paragraphs. For
example:

p { text-indent: 5em }

Negative values can be used to move the first line of the text out into the margin by the amount
specified.

Notation Meaning

capitalize capitalizes first character of each word

uppercase capitalizes all characters of each word

lowercase uses small letters for all characters of each word

none leaves characters as defined

-- 21 --
© Oxford Brookes University 2003

6.8 Line Height

line-height: normal | <number> | <length> | <percentage>

The line-height property defines the spacing between baselines of two adjacent lines of text It can be
defined in points, inches, centimetres, or even pixels. When the value is a number, the line height is
calculated by multiplying the element's font size by the number. Percentage values are relative to the
element's font size. Negative values are not allowed.
The line-height property could be used to double space text:

p { line-height: 200% }

If the font-size is 10pt, the following rules all have the same effect:

p { line-height: 1.2 }
P { line-height: 1.2em }
P { line-height: 120% }

A value of normal is usually set to between 1.0 and 1.2

-- 22 --
© Oxford Brookes University 2003

7. Box Properties

l 7.1 Introduction
l 7.2 Margin Setting
l 7.3 Padding Setting
l 7.4 Border Setting
l 7.5 Border Color
l 7.6 Border Style
l 7.7 Setting All Border Properties Together
l 7.8 Width and Height of Images
l 7.9 Float
l 7.10 Clear

7.1 Introduction
Block-level elements such as h1, p, ul have an area that contains the content of the text in the element.
CSS provides control of how that content is placed on the page. CSS allows the core content to be
surrounded by padding, a border and a margin as shown in Figure 7.1

Figure 7.1: Box Model

The padding has the same background as the element, the border can be set to have a different
background while the margin is always transparent so that the background of the parent element shows
through. An example is shown in Figure 7.2.

-- 23 --
© Oxford Brookes University 2003

Figure 7.2: Example of box properties

If the next item below also has a margin, the top margin of the next element will be immediately below
the border of the first element. Properties associated with margins, borders and padding can be set
differently for the top, right, bottom and left sides (for example, their width). If all four are set by a single
property (for example, margin), it is possible to specify between 1 and 4 values (notation {1,4}). The
four values are defined in the order top, right, bottom and left. If less than 4 are specified, the rule is as
follows. If only one value is given, it applies to all sides. If 2 or 3 are given, the missing values are the
same as the opposite side.

7.2 Margin Setting

margin-top: <length> | <percentage> | auto
margin-right: <length> | <percentage> | auto
margin-bottom: <length> | <percentage> | auto
margin-left: <length> | <percentage> | auto
margin: [<length> | <percentage> | auto] {1,4}

The first four properties set one of the margins while the last property is a shorthand that can set all four
in the order given above. The length can be given in points, inches, centimetres, or pixels. Percentage
values are relative to the width of the parent element. Negative margins are permitted so that
overlapping can be achieved.
The following rule would set no bottom margin for the document:

body { margin-bottom: 0 }

-- 24 --
© Oxford Brookes University 2003

Other example might be:

li { margin-left: 50% }
ul { margin-bottom: 2em }
p { margin-right: 1in }
body { margin: 1em 1in 2em 1in }

The last example sets the margin-top to 1em, the margin-bottom to 2em and the right and left margins to
1 inch.

7.3 Padding Setting

padding-top: <length> | <percentage>
padding-right: <length> | <percentage>
padding-bottom: <length> | <percentage>
padding-left: <length> | <percentage>
padding: [<length> | <percentage>] {1,4}

Padding is defined in much the same way as the margin. The main difference is that negative padding is
not allowed. An example is:

h1 { background: red }
h1 { padding: 1em 1in }

The padding would also be coloured red.

7.4 Border Setting

border-top-width: thin | medium | thick | <length>
border-right-width: thin | medium | thick | <length>
border-bottom-width: thin | medium | thick | <length>
border-left-width: [thin | medium | thick | <length>
border-width: [thin | medium | thick | <length>]{1,4}

The general rules for defining borders are much as for margins and padding. However, negative borders
are not allowed. The assumption is that the browser will make thin borders smaller than medium ones
and thick ones larger than medium ones. No other guidance is given.

7.5 Border Color

border-color: <color> {1,4}

The border-color property sets the colour of the border. The four border parts (top, right, bottom, left)
can be set to different colours. An example is:

P { border-color: black red black red}

This would set the border as a solid black line top and bottom and red at the sides.

-- 25 --
© Oxford Brookes University 2003

7.6 Border Style

border-style: [none | dotted | dashed | solid | double | groove | ridge | inset |outset] {1,4}

The border-style property sets the style of the border and must be specified for the border to be visible
(the default is none). For double, two lines are drawn and the width is between the outer edges of the
two lines. Groove, ridge, inset and outset produce various 3D effects normally associated with buttons
on a display.

7.7 Setting All Border Properties Together

border-top: [<border-top-width> || <border-style> || <border-color>]
border-right: [<border-right-width> || <border-style> || <border-color>]
border-bottom: [<border-bottom-width>|| <border-style> || <border-color>]
border-left: [<border-left-width> || <border-style> || <border-color>]
border: [<border-width> || <border-style> || <border-color>]

The first four properties are a shorthand for setting the width, style, and colour of one part of an
element's border.
The border property is a shorthand for setting the same width, style, and colour to all four border parts.
Examples of border declarations include:

h2 { border-top: dotted 3em }
p { border-right: solid blue }
li { border-left: thin dotted #FF0000 }
h1 { border: medium blue double }

-- 26 --
© Oxford Brookes University 2003

In the following example:

<html>
<style type="text/css">
<!--
ul { margin: A B C D }
ul { padding: E F G H }
ul { border: medium solid black }
ul { background-color: red }
li { margin: a b c d }
li { padding: e f g h }
li { border: medium solid black}
li { background-color: blue }
-->
</style>
<body>
<p>The possible values of the list are:</p>

first list element
second list element

<p>And this is where the next paragraph will be placed
</body>
</html>

The user has control of all the values shown in Figure 7.3.

Figure 7.3: List Parameters

-- 27 --
© Oxford Brookes University 2003

Note that the two margins in the middle are collapsed to a single margin.
The list in Figure 7.4 shows the kind of effect that can be achieved.

Figure 7.4: Example of a List

7.8 Width, Height of Images

width: <length> | <percentage> | auto
height: <length> | auto

These two properties apply to both block-level elements and replaced elements such as images. The
width or height can be specified and the aspect ratio maintained by setting the other one to auto. If both
are specified precisely, the scaling will not maintain the aspect ratio. If both are specified as auto, the
intrinsic size of the image is used. For example:

img {width: 100px}
img {height: auto}

Percentage values for width refer to the parent element's width. Negative values are not allowed. Users
should be aware that scaling by arbitrary amounts can severely degrade the image quality as can
changing the aspect ratio so some care should be taken when using this property.

-- 28 --
© Oxford Brookes University 2003

7.9 Float

float: left | right | none

The float property allows the user to wrap text around an element. If left is specified, the element floats
to the left and the text wraps around to the right and vice versa. Figure 7.5 shows an image with the
property float:right and shows how the paragraph that it is part of flows around the image.

Figure 7.5: Image float:right

7.10 Clear

clear: none | left | right | both

The clear property can be used by box-level elements to ensure that a previous floating element is not
adjacent to one of its sides. A value of left applied to an element such as h1 would ensure that any
images with float set to left defined above it in the page would not appear to its left. The element would
effectively move below the image (by adding addtional space above the h1 element). For example:

h1: {clear: left }

The value right ensures that it is does not overlap with any images floated to the right. The value both
is equivalent to setting both left and right. The property can also be used by inline elements.

-- 29 --
© Oxford Brookes University 2003

8. Classification Properties

l 8.1 Display
l 8.2 Whitespace
l 8.3 List Style Type
l 8.4 List Style Image
l 8.5 List Style Position
l 8.6 List Style

8.1 Display

display: block | inline | list-item | run-in | inline-block | none

CSS when used with HTML has a good knowledge of which elements are inline elements and which are
block-level. Even for elements defined by the user using div and span the type of element is known.
The only thing not known is whether it is a list element which has different inheritance rules from normal
paragraphs. If CSS is used with XML, the elements have no concept of inline and block-level and there
needs to be a mechanism to define which elements are inline and which are block-level.
The display property describes how an element is displayed by giving an element one of four values:

Elements are given default display values by the browser, based on suggested rendering in the HTML
specification.
Examples could be:

p { display: block }
em {display: inline }
li {display: list-item }
img {display: none }

The display property allows the normal settings to be changed.

8.2 Whitespace

white-space: normal | pre | nowrap

The white-space property defines how spaces within an element are displayed. This property takes one
of three values:

Notation Meaning

block defines the element as being a new rectangular area positioned relative to other
adjacent areas. H1 and P would normally displayed as a block.

inline defines the element as a new area on the same line as the previous content.

list-item same as block except a list-item marker is added.

run-in can be inline or block depending on the context

inline-block added in CSS 2.1. Acts as a block-level element but flows as though it was an
inline box (like an image)

none no display at all

Notation Meaning

normal collapses multiple spaces into one

pre does not collapse multiple spaces

nowrap line wrapping is only done via an HTML br element

-- 30 --
© Oxford Brookes University 2003

Examples could be:

pre { white-space: pre }
p { white-space: normal }

8.3 List Style Type

list-style-type: disc | circle | square | decimal | lower-roman | upper-roman | lower-alpha |
upper-alpha | none

The list-style-type property specifies the type of list-item marker to be used for ordered and unordered
lists, and is used if:

l list-style-image (see 8.4) is none;
l image loading is turned off;
l the image pointed to by the URL cannot be displayed.

Some examples are:

li { list-style-type: square }
ul { list-style-type: decimal }
ol { list-style-type: lower-alpha }

The first displays small squares, the second 1, 2, 3, etc and the third a, b, c, etc.

8.4 List Style Image

list-style-image: <url> | none

The list-style-image property defines the image to be used as the list-item marker when image loading is
turned on. It replaces the marker specified in the list-style-type property. For example:

ul { list-style-image: url("arrow.gif") }
li { list-style-image: url("triangle.png") }

8.5 List Style Position

list-style-position: inside | outside

This property defines where the marker is displayed relative to the list item. For inside, the lines will
wrap under the marker instead of being indented while for outside it will not. An example is:

ul { list-style: outside }
ol {list-style: inside }

-- 31 --
© Oxford Brookes University 2003

where the first would produce:

* List item 1 extending to
second line of list item
* List item 2 extending to
second line of list item

and the second would produce:

1. List item 1 extending to
 second line of list item
2. List item 2 extending to
 second line of list item

8.6 List Style

list-style: [<list-style-type> || <list-style-position> || <list-style-image>]

The list-style property is a shorthand for the list-style-type, list-style-position, and list-style-image
properties. For example:

li { list-style: square inside }
ul { list-style: circle url(triangle.png) outside}
ol { list-style: upper-alpha none }

-- 32 --
© Oxford Brookes University 2003

9. Structure and Control

l 9.1 Introduction
l 9.2 Classes
l 9.3 Identifiers
l 9.4 Contextual Selectors
l 9.5 Grouping
l 9.6 Universal Selector
l 9.7 Attribute Selectors
l 9.8 Comments
l 9.9 The Elements div and span

9.1 Introduction
So far, individual rules have been applied to all elements of a specific type. While that may be
appropriate for something like h1, it is less so for something like p as frequently a sub-set of the
paragraphs in a document may require specific styling. Within HTML, a number of facilities are provided
to allow more specialised control. These are described in this section.

9.2 Classes
The elements of a specific type can be grouped into classes by the HTML class attribute. For example:

<h1 class="firstsection"> Section One Heading </H1>
....
<h1 class="secondsection"> Section Two heading </H1>
...
<h1 class="thirdsection">Section Three Heading </H1>
...

The selector in a style rule need not be an element type but can be qualified by a class name. So for
example:

<style>
h1.firstsection {font: 15pt/17pt; color: red}
h1.secondsection {font: 15pt/17pt; color: green}
h1.thirdsection {font: 15pt/17pt; color: blue}
</style>

Similarly, in a document written by two people you might have:

<style>
p.mytext {font: 14pt/16pt; color: red}
p.histext {font: italic 12/14pt Times; color: green}
</style>
<body>
<p class="mytext"> This is a paragraph that I wrote.</p>
<p class="histext"> This is a paragraph that my partner wrote.</p>
</body>

-- 33 --
© Oxford Brookes University 2003

In such an example, it is feasible that the other author also would have added headings and other
features. Classes can be applied to different elements so the document could also contain:

<h1 class="histext"> His Title </h1>

In this case, the selector can just consist of the class name:

.histext { font-size: small; color: green}

In this case, the histext class may be used with any element.
It is good practice to use classes to break up the content of a document into a semantically meaningful
breakdown and consider how it should be styled later.
HTML allows several class names to be associated with a single element and each can be used for
specifying styling. This allows the same element to be categorised in more than one way. For example:

<p class="mine code">x=y</p>
<p class="his ref"> [16]</p>
<p class="mine ref"> [18]</p>
<p class="his code">y=3</p>

Here the paragraphs are categorised on both their type and their author. Styling could be defined by:

.mine {color: red}

.his {color: green}

.code {font-family: Courier}

.ref {font-style:italic}

If there is a conflict between the two classes in the styling required, the normal precedence rules apply
(see Section 12).

9.3 Identifiers
The id attributes in HTML are similar to classes in that they give another level of naming but in addition
 id attributes are unique and are associated with a single element. Thus it is possible to write:

<p id="abc123">Text quotation</p>

Each id attribute has a unique value over the document. The value consists of an initial letter followed
by letters, numbers, digits, hyphens, or periods. The letters are restricted to A-Z and a-z.
The text above could be selected by:

#abc123 { text-transform: uppercase}

-- 34 --
© Oxford Brookes University 2003

9.4 Contextual Selectors
Contextual selectors allow a finer specification based on the context of the element type. For example,
emphasised sections within a h1 element might be displayed differently from emphasised sections that
appear within other headings. Contextual selectors consist of two or more simple selectors following
each other. These selectors can be assigned properties and they will take precedence over simple
selectors so for example:

h1 em { color: green }
p em { color: red }
div p em { background: blue }

The emphasised text within an h1 element would be green while those in paragraphs would be red
unless the paragraph resided within a div element in which case the emphasised text would have a blue
background.
The selector only requires the second element specified to be a descendant of the first and not an
immediate child. To insist that the second element is a child of the first element requires:

h1 > em { color: green }
p > em { color: red }
div > p > em { background: blue }

9.5 Grouping
If the same rule applies to a set of elements, they can be grouped together. For example, all of the
headings could be given the same font and colour by:

h1, h2, h3, h4, h5, h6 {color: red; font-family:sans-serif }

9.6 Universal Selector
To match any element, it is possible to replace the element name in the selector by the symbol *. In
most of the examples used so far, there is no real use for the universal selector as omitting the name
implies all possibilities. Where it is useful is within contectual selectors. For example:

div * li {color:red }

Within any div element, list items will be red independent of whether they are within ul or ol lists.

9.7 Attribute Selectors
It is possible to do a selection based on whether an element has an attribute and whether that attribute
has a specified value. The possibilities are illustrated below.

h1[class] { color:blue }
h1[class="main"] { color:red }
h1[class~="main"] { color:green }
h1[class="main"][id="fred"] { color:yellow }

The first example will set to blue all h1 elements that have a class attribute. All h1 elements that have
the class set exactly to main will be red. Those h1 elements that have main as part of the class value
will be green and the one that has id set to fred as well will be set to yellow.

-- 35 --
© Oxford Brookes University 2003

9.8 Comments
Comments are denoted within style sheets with the same conventions that are used in C programming.
A sample CSS comment would be:

p {color: green } /* A comment for this rule */

9.9 The Elements div and span
The two HTML elements div (for division) and span (for span over) can be used in conjunction with the
calss attribute to define new HTML elements. For example:

<div> class = "newh1">
A Different Kind of Title
</div>

effectively defines a new HTML element newh1. A selector of the form:

div.newh1 { color: green }

would specify how this new element would appear. The span element acts in much the same way as
div but is an inline rather than a block-level element.

-- 36 --
© Oxford Brookes University 2003

10. Pseudo-classes and Pseudo-elements

l 10.1 Introduction
l 10.2 Anchor Pseudo-class
l 10.3 First Line Pseudo-element
l 10.4 First Letter Pseudo-element
l 10.5 Context Pseudo-elements

10.1 Introduction
Pseudo-classes and pseudo-elements are similar to classes but are special in that they are
automatically added to certain elements or sub-parts of elements by a CSS-supporting browser. Rules
for pseudo-classes or pseudo-elements take the form

selector:pseudo-class { property: value }
selector:pseudo-element { property: value }

10.2 Anchor Pseudo-class
Pseudo-classes are assigned to an anchor element to allow links to be displayed differently depending
on whether they are visited or active links. A visited link could be displayed in a different colour and font
size, for example. An active link is a link that is being followed at the moment by the browser. Normally,
this would only be visible if the browser was displaying a hierarchy of pages. Examples might be:

a:link { color: red }
a:active { color: green; font-size: 140% }
a:visited{ color: blue; font-size: 60%; text-decoration: none}

The third rule would remove the underline from links that had already been visited.
Some browsers provide user support for how links should be displayed. In consequence, the styling of
links may not be as useful as might be thought. The effect proposed by the stylesheet may not appear.

-- 37 --
© Oxford Brookes University 2003

10.3 First Line Pseudo-element
Many typographic styles start by capitalising or making bold the first line of text in an article. CSS
provides support for this via a first-line pseudo-element. For example:

P:first-line { text-transform: capitalize; font-weight: bold }

might display the paragraph:

<p>
When computers first were used in office automation, they were
ineffective.
</p>

with the first few words that appear on the first line set in capitals.

Figure 10.1: Property first-line:capitalize

10.4 First Letter Pseudo-element
The first-letter pseudo-element is used to create effects on the initial letter of an element. For example:

P:first-letter { font-size: 200%; float: left }
P:first-line { text-transform: capitalize; font-weight: bold }

would create a drop cap twice the normal font size for the initial letter and the first line capitalised as
shown in Figure 10.2.

Figure 10.2: Example of a list

-- 38 --
© Oxford Brookes University 2003

10.5 Context Pseudo-elements

content: [<string> | <url> | <counter> | attr(X) | open-quote | close-quote]+

Two pseudo-elements exist to allow information to be added before or after a specific element. Such
information is called generated content. For example:

p.note:before {content:"Note: "}
p.note:after {content:" (end of Note)"
. . .
<p class=note">A paragraph</p>

The two pseudo-elements :before and :after are used to add content to the document to be presented
that does not appear in the original HTML. In this example paragraphs of class note have the text Note:
added before the paragraph and the text (end of Note) added after the paragraph. This would generate
a paragraph looking like:

Note: A paragraph (end of Note)

An example of generated content that has always been there in HTML is the decoration for lists (bullets
or numbers) and this facility allows users both to tailor that decoration and produce decoration for their
own uses. It is possible to point to a resource thus allowing a large block of content or even an image to
be inserted. While there is good support for the facility in Netscape and Opera's latest offerings, the
facility is not supported in IE5.5.
Two other examples to illustrate how the facility could be used are:

p {counter-increment: par-num}
h1 {counter-reset: par-num}
p:before {content: counter(par-num, upper-roman) ". "}
. . .
img:before {content: attr(alt) }

In the first, the property counter-reset resets the value of the variable par-num to zero. Each p causes
the variable to be incremented and output before the paragraph. Consequently, all the paragraphs are
numbered in each major section starting each time from 1.
In the second example, the img element has the value of its alt attribute output before the image. For a
text-only browser, it would be possible to remove the image and replace it with the alt text. For example:

img { width: 0 !important; height: 0 !important }
img:before { content: "[" attr(alt) "]"; color: yellow !important;
background: red !important; margin: 0 0.33em !important }

The image is reduced to zero size and the alternative text is presented in yellow on a red background.

-- 39 --
© Oxford Brookes University 2003

11. Linking Style Sheets to HTML

l 11.1 Linking to an External Style Sheet
l 11.2 Embedding a Style Sheet
l 11.3 Importing a Style Sheet
l 11.4 Inlining Style
l 11.5 Mixing Methods

11.1 Linking to an External Style Sheet

<link rel=<stylesheet> href= <url> type="text/css" [title=<string>]? [media="<media>"]?
>
<media> ::= [<medium> [,<medium>]*]
<medium> ::= [print | screen | projection | braille | embossed | handheld | aural | all]
<stylesheet> ::= [stylesheet | alternate stylesheet]

To link to an external style sheet, the author creates a file containing the appropriate style rules and
uses the link command as above. Convention is to name the file with a .css file extension. It allows the
same style sheet to be used for any number of pages. More than one stylesheet can be provided for
each media. One is defined with the stylesheet attribute set to stylesheet and the others set to
alternate stylesheet. Both Netscape 6 and Opera 7 allow you to select which style you want from the
View menu.
If the style sheets are called mystyles.css and myaltstyles.css and are located at:
http://cclrc.ac.uk/
the style sheets would be added by:

<head>
<title>Title of page</title>
<link rel="stylesheet" href="http://cclrc.ac.uk/mystyles.css" >
<link rel="alternate stylesheet"
href="http://cclrc.ac.uk/myaltstyles.css" >
</head>

Other examples of link are:

<link rel="stylesheet" href="style.css" type="text/css" media="screen">
<link rel="stylesheet" href="another.css" type="text/css"
media="screen, print">
<link rel="stylesheet" href="aural.css" type="text/css" media="aural">

The <link> tag is placed in the document head. The optional type attribute is used to specify a media
type. The type text/css specifies a Cascading Style Sheet. This allows browsers to ignore style sheet
types that they do not support. Configuring the server to send text/css as the Content-type for style
sheets files is also sensible.
Internet Explorer registers the Internet Media (MIME) type for style sheets, so it is not necessary for the
user to register the "text/css" type on the server.
External style sheets should not contain any HTML tags. The style sheet should consist merely of style
rules. For example:

p { color: red }

in a file could be used as an external style sheet.

-- 40 --
© Oxford Brookes University 2003

The <link> tag has an optional media attribute, which specifies those media to which the style sheet
should be applied. Possible values are:

Multiple media are specified through a comma-separated list or the value all.
The rel attribute is used to define the relationship between the linked file and the HTML document. By
setting rel="stylesheet" a style sheet is specified.
A single style sheet may also be provided by multiple style sheet links:

<link rel="stylesheet" href="main.css" title="House">
<link rel="stylesheet" href="tables.css" title="House">
<link rel="stylesheet" href="forms.css" title="House">

In this example, three style sheets are combined into one "House" style that is applied as a default style
sheet. To combine multiple style sheets into a single style, one must use the same title with each style
sheet.
External style sheet are best used when the style is to be applied to many pages. Thus an external style
sheet could be used by an author to change the look of an entire site by changing the house style sheet.
Most browsers should cache an external style sheet thus avoiding a delay in page presentation once the
style sheet has been cached.

11.2 Embedding a Style Sheet

<style type="text/css"> [title=<string>]?[media = <media>]? <rules> </style>

To embed a style sheet in an HTML document,a <style> </style> block needs to be added at the top of
the document, between the <html> and <body> tags. The <style> tag has an attribute, type which
specifies the Internet Media type as text/css (allowing browsers that do not support this type to ignore
style sheets). The <style> tag is followed by any number of style definitions or rules and terminated with
the </style> tag.
The following example specifies styles for the <body>, <h1>, <h2>, and <p> tags:

<html>
<style type="text/css">
body {font: 10pt "Times"}
h1 {font: 15pt/17pt "Palatino"; font-weight:bold; color: maroon}
h2 {font: 13pt/15pt "Palatino"; font-weight:bold; color: blue}
p {font: 10pt/12pt "Palatino"; color: black}
</style>
<body>
...
</body>
</html>

Value Meaning

print for output to a printer

screen for presentation on computer screens

projection for projected presentations

braille for presentation on Braille tactile feedback devices

embossed for paged braille printers

handheld for small monochrome screens (phone, PDA)

projection for overhead data projectors

tv for low resolution devices with limited scrolling

tty for limited devices with fixed width characters

aural for aural presentation

all for all output devices (the default)

-- 41 --
© Oxford Brookes University 2003

Another example is:

<style type="text/css" media="screen"
body { background:url(grass.gif) red; color: black }
p em { background: yellow; color: black}
.note { margin-right: 1in; margin-left: 1in }
</style>

The style element is placed in the document head. The type attribute is used to specify a media type in
the same way as the link element. Similarly, the title and media attributes may be specified with styling.
Embedded style sheet are normally used when a document has a unique style.

11.3 Importing a Style Sheet
A style sheet may be imported using the import statement. This statement may appear in a .css file or
inside the style element. For example:

<style type="text/css" media="screen">
@import url(http://www.clrc.ac.uk/ralstyle.css);
@import url(/stylesheets/local.css);
p {background: yellow; color: black }
</style>

All @import statements must occur at the start of the style sheet. Any rules specified in the style sheet
override rules in the imported style sheets so in our example, if an imported style sheets contains a P
definition, paragraphs would still have a yellow background.
The order in which style sheets are imported is important as it determines how cascading takes place. If
the ralstyle.css imported specified that em elements be displayed in blue and the local.css style sheet
specified that em elements be shown in yellow, the second rule would define that the em elements
should be in yellow.
Imported style sheets can be modularised in a number of ways. For example, a site might define
separate style sheets for each element. It might have a simple.css style sheet for rules such as body,
p, h1, and h2 and an extra.css style sheet for less common elements such as code, blockquote, and
dfn. There might be a tables.css style sheet if table elements are to be used. Which style sheets are
included in HTML documents will depend on the need.

-- 42 --
© Oxford Brookes University 2003

11.4 Inlining Style
Style may be inlined using the style attribute associated with individual elements. For example:

<p style="color: red; font-family: 'New Century Schoolbook', serif">
</p>

Only this paragraph is styled by this style attribute, specifically in red with the New Century Schoolbook
font, if available. Note that New Century Schoolbook is contained within single quotes in the style
attribute as double quotes are used to contain the style declarations. Inlining styles mix content with
presentation. It is recommended that this is used only as a last resort. They also apply to all media, as
there is no method for specifying the medium for an inlined style.

11.5 Mixing Methods
Initially, it is probably a good idea to use just one method of specifying style sheets. However, if you
want to have a corporate style that can be changed when justified it might well be sensible to link to the
corporate style and embed the style local to the page. Similarly, the reader may well have his preferred
style linked in rather than specify it for each document.

-- 43 --
© Oxford Brookes University 2003

12. Cascading Order and Inheritance

Inheritance has been implicit in some of the examples used already. Selectors which define a broad
class of elements will be inherited by a narrower selector. For example, a colour defined for the body of
a document will also be applied to text in a paragraph as the paragraph is part of the body. Properties
defined for all paragraphs will also apply to paragraphs of a sub-class if not overwritten.
Style sheets can be defined for each page. The style sheet for a page can include a style sheet
imported from another page. Readers can specify their own style sheet. When multiple style sheets are
used, the style sheets may all want to control the same selection. Therefore, rules are required to
specify which style sheet rule will take precedence. The precise rules are quite complicated but are
approximately as follows:
In the example above, it is assumed that the author has started with some general style sheet that is
imported. This has been followed by the local house style sheet for the company. The author has
defined some generic style that is probably linked in to each page of a set and finally there may be some
specific styling for the individual page. Within the page some special effect may be required on just one
element or part of an element to make a specific point. An author's style sheet takes precedence over a
reader's which takes precedence over a browser's. As the author becomes more specific, that style
takes precedence over less specific ones.
For some situations, it is important that the reader's preferences take control (for example, a person with
limited vision might want to increase the font sizes; somebody using his mobile phone might want to
decrease them!). Thus, browsers need to have an ability to turn off the author's style or to change these
precedence rules between author and reader.
The relative ordering can be changed by insisting that a particular style is more important than its place
in the hierarchy suggests. For example, the company may insist that some aspects of the house style
must be adhered to under all circumstances. The priority of a particular style rule can be enhanced by
the !important attribute. For example:

h1 { font-size 16pt !important; background: maroon !important }

A browser must define all the relevant properties for all elements. This is achieved as follows:

1. See if the cascade through the style sheets defines a value for the specific property for that
element. If that is found, use it.

2. If the cascade does not define a value, see if the property is inherited.
3. If neither the cascade or the inheritance defines a value, use the property's default initial value if

there is one. Normally if one is not specified, the browser will define one.

The style sheets come from three different origins:

1. Author: all that we have talked about so far have been the author's styling for the document.
2. User: users are allowed to define their own style sheet and browsers must provide support for

them. For example, in IE6, under the Tools/Internet Options/Accessibility menu, the user can
define their own style sheet. Mozilla and Netscape require the user stylesheet to be placed in a
specific directory with the name userContent.css. Opera is similar to IE6.

3. Browser: browsers will provide a default style sheet so that if no styling is provided, titles do
appear as titles and emphasised text is emphasised.

The precedence rules for the three origins is quite simple:

1. Author and User style sheets take precedence over the browser style sheet.
2. Author style sheet takes precedence over User style sheet unless the rule is defined as !

important in which case it is the other way around.

So the order is:

1. User styles marked !important
2. Author styles marked !important
3. Author styles
4. User styles
5. Browser styles

-- 44 --
© Oxford Brookes University 2003

The author may have defined the styling for the document by linking to a style, including a style element
at the head of the document (and this may import style sheets). Finally the author may have defined a
style attribute for a specific element. The rules as to which takes precedence here is:

1. A style attribute attached to an element takes precedence over the style sheet defined by the
style element in the head of the document.

2. If the style element imports style sheets these must appear before any locally defined styling
and the latter takes precedence over the imported styling.

3. The imported style sheet may also have imported style sheets within it and these are of lower
precedence than itself and so on.

4. The linked style sheet has lower precedence to the one defined by the style element.

Note that precedence here is between rules of equal specificity. More specific rules will always take
precedence over less specific ones whatever the source.
This allows us to remove rules of the same specificity if variants come from several sources. At the end
of the prioritising, only one is retained.
To define which is the most specific rule, we need to check through the rules of different specificity. Here
the rules are:

1. More specific selectors take precedence over less specific ones. id attributes take precedence
over class attributes and they take precedence over element names. So a single id takes
precedence over several class names and a single class name takes precedence over several
element names.

2. If after all that several rules still remain with the same specificity, the one that appears last in the
text is taken.

To ensure that an element inherits a value of a property from its parent, the only way to be sure is to
have the most specific rule that wins the above cascade defining the property as having the value
inherit. A common mistake is to have a document as follows:

<html>
<style type="text/css">
<!--
ul { color:red }
li { font-size:12pt }
-->
</style>
<body>
<p>The possible values of the list are:</p>
<ul style="font-size:14pt">
first list element
second list element

</body>
</html>

The font-size of the list elements will be 12pt and not 14pt. The only way for the 14pt to be inherited by
the list elements is if there are no styling rules for list elements that apply to this list.

-- 45 --
© Oxford Brookes University 2003

13. Layout and Media

l 13.1 Positioning
l 13.2 Media
l 13.3 Printing
l 13.4 Aural Output

13.1 Positioning

position: static | relative | absolute | fixed | inherit

The normal flow for the position of a block-level element is to position it immediately after the previous
element. We have seen that for images it is possible to move them out of the normal flow by allowing
them to float to the left or right. For each block-level element, it is possible to define the position of that
element using one of the values given above:

static
Block-level element is laid out according to normal flow

relative
Properties left, right, top and bottom define offsets with respect to the position it would normally be at

absolute:
relative to the containing block-level element so not really absolute

fixed
fixed relative to the viewport

Of these, fixed is poorly supported in browsers but absolute is although not completely correctly in
some.

p.left { style="float:left;clear:left;background-color:silver;
width:100pt;border:solid;margin:5pt} . . . <p class="left">Button<p>

This would position a button on the left of the display. Several uses of this and similar elements could be
used to create a layout as shown in Figure 13.1.

-- 46 --
© Oxford Brookes University 2003

Figure 13.1: Layout using float and clear

Positions of block-level elements can be made absolutely as follows:

<p style="background-color:lemonchiffon; width:80pt;
margin:2pt;position:absolute; top:75pt;left:125pt">Button 1</p>

By varying the values of top and left an arrangement of buttons under the control of the author can be
achieved as shown in Figure 13.2.

13.2 Media
Within a style sheet it is possible to define rules that only apply to a specific media by using the @media
rule. Some examples are:

@media print, handheld { body { font-size: 10pt } }
@media screen { body { font-size: 12pt } }
@media projection
{ body { font-size: 16pt }
p { font-size:10pt}
. . .
}

The first rule only applies if the media is print or a handheld device. The second applies if the output is
the display. The third shows how a set of styling can all be defined for a specfic media by enclosing
them in a single @media rule. The possible media types are listed below.

-- 47 --
© Oxford Brookes University 2003

Figure 13.2: Absolute Positioning

all
All devices

aural
for speech synthesisers

braille
braille tactile feedback devices

embossed
paged braille printers

handheld
small monochrome screens (phone)

print
paged devices

projection
overhead projectors

screen
normal display

tty
limited print devices

tv
low resolution

Media such as print and aural have styling specific to that media.

13.3 Printing
Printing devices have the concept of a page. For outputting to such devices there is a need to control
the size of a page and when a page break occurs.

size: <length>{1,2} | auto | portrait | landscape

-- 48 --
© Oxford Brookes University 2003

The size property together with margin allows the author to define the characteristics of the page:

@page {size: 8.5in 11in; margin: 2cm}

@page:left {margin-left: 4cm; margin-right: 3cm}

@page:first {margin-top: 10cm}

The property @media has the pseudo-elements left, right and first associated with it to allow specific
styling for the first page and left and right pages.

page-break-before: auto | always | avoid | left | right
page-break-after: auto | always | avoid | left | right
page-break-inside: avoid | auto
orphans: <integer>
widows: <integer>

Some examples are:

h1 {page-break-before: always}

p {page-break-inside: always; orphans: 2}

The property orphans specifies the minimum number of lines of a paragraph at the bottom of a page.
The property widows specifies the minimum number of lines of a paragraph at the top of a page.
Between them they help to provide some control over when a page break should appear. For ensuring
that chapters start on new pages and similar requirements, the propert page-break has the following
possibilities:

auto
Don't force or forbid page break (before, after, inside)

always
Always force a page break (before, after)

avoid
Avoid a page break (before, after, inside)

left
Force page breaks (before, after) to make the next page a left one

right
Force page breaks (before, after) to make the next page a right one

13.4 Aural Output
The aural rendering of a document is particularly useful for people with accessibility problems (blind or in
a car) that make it difficult to see the document. Browsers have been developed that have this as their
major form of output. They can also be used in a teaching environment such as learning to read where a
mixture of text and aural output adds to the learning experience. For aural devices, the space in which
the document is rendered is 3-dimensional and has a temporal dimension. Some of the properties
special to this media are:

-- 49 --
© Oxford Brookes University 2003

volume
The median volume of the aural output

speak
Defines whether text will be converted to speech and whether the individual letters will be spelled ou.

pause
Defines any pausing required

cue
Defines any lead in or lead out required to some aural rendering

play-during
Specifies background aural output, similar to background-color for display devices.

azimuth, elevation
Defines the position of the aural output in the 3-dimensional space

Voice Characteristics
A set of properties allowing differentiation between several aural renderings

speak-punctuation, speak-numeral
Defines how punctuation and numbers should be presented

The relevant definitions are:

volume : <number> | <percentage> | silent | x-soft | soft | medium | loud | x-loud
speak: normal | none | spell-out
pause-before: <time> | <percentage>
pause-before: <time> | <percentage>
pause: [<time> | <percentage>] {1,2}
cue-before: <url> | none
cue-after: <url> | none
cue: [<url> | none] [<url> | none]
play-during: <url> mix? repeat? | auto | none
azimuth: <angle> | <auralposition> | leftwards | rightwards
<auralposition> ::= [left-side | far-left | left | center-left | center | center-right | right | far-
right | right-side] || behind
elevation: <angle> | below | level | above | higher | lower
speech-rate: <number | x-slow | slow | medium | fast | x-fast | faster | slower
voice-family: [specific-voice}, .. [generic-voice]
pitch: <frequency> | x-low | low | medium | high | x-high
pitch-range: <number> stress: <number> richness: <number>
speak-punctuation: code | none speak-numeral: digits | continuous

Many of these properties have reasonably obvious meanings. An example style sheet might be:

h1 {voice-family: paul; cue-before: url("ping.au") }
p.heidi {azimuth: center-left}
p.peter {azimuth: far-right}
p.goat {volume: x-soft}
em {speak: spell-out}
ul {pause-before: 20ms}
blockquote.sad {play-during: url("violins.aiff") }
p.god {elevation: above; speech-rate: slow; volume:loud}
code {speak-punctuation: code; speak-numeral: digits}

-- 50 --
© Oxford Brookes University 2003

14. Tables

l 14.1 Two Models

14.1 Two Models
Styling of tables in CSS is complicated by the fact that there are two different models available:

l collapsing borders
l separate borders

The first only allows one border to appear while the second allows multiple borders. The second is the
default. Suppose we have the table:

<table title="Membership of W3C" summary="Test Table">
<caption>W3C Membership</caption>
<thead>
<tr>
<th>Type</th><th>Americas</th><th>Europe</th><th>Pacific</th><th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<th>Full</th><td>62</td><td>29</td><td>17</td><td>108</td>
</tr>
<tr>
<th>Affiliate</th><td>240</td><td>123</td><td>47</td><td>410</td>
</tr>
<tr>
<th>Total</th><td>302</td><td>152</td><td>64</td><th>518</th>
</tr>
</tbody>
</table>

If the style sheet is:

table { border-collapse:separate }
td {border:solid blue 2pt}
th {border:solid red 1pt}

The result would be:

W3C Membership

Type Americas Europe Pacific Total

Full 62 29 17 108

Affiliate 240 123 47 410

Total 302 152 64 518

-- 51 --
© Oxford Brookes University 2003

By changing the styling to:

td {border:solid blue 2pt}
th {border:solid red 1pt}
table {border:dotted green 3pt; border-collapse:separate;}

the result becomes:

Figure 14.1: Table Properties

W3C Membership

Type Americas Europe Pacific Total

Full 62 29 17 108

Affiliate 240 123 47 410

Total 302 152 64 518

-- 52 --
© Oxford Brookes University 2003

By setting the border to collapse results in:

td {border:solid blue 2pt}
th {border:solid red 1pt}
table {border:dotted green 3pt; border-collapse:collapse;}

The result becomes:

Rows and columns can be styled individually and there is a well-defined algorithm that states which
takes precedence (see Figure 15.1). Cells take precedence over rows and so on.
An example styling columns and rows is:

<style>
td {border:solid blue 2pt}
th {border:solid red 4pt}
table {border:dotted green 3pt;border-collapse:collapse;background-color:white}
colgroup.a {background-color:yellow}
tr.three {background-color:white}
col.col1 {background-color:navajowhite}
tbody.second {background-color:powderblue}
colgroup.b {background-color:lime}
tr.two {background-color:pink}
th.grand {background-color:yellow}
</style>

<table>
<colgroup class="a" ><col class="col1"/><col class="col2" /></colgroup>
<colgroup class="b" span="3" />
<thead>. . .</thead>
<tbody class="first">
 <tr class="two">
 <th>Full</th><td>62</td><td>29</td><td>17</td><td>108</td>
 </tr>
</tbody>
<tbody class="second">
 <tr>
 <th>Affiliate</th><td>240</td><td>123</td><td>47</td><td>410</td>
 </tr>
 <tr class="three">
 <th>Total</th><td>302</td><td>152</td><td>64</td><th class="grand">518</th>
 </tr>
</tbody>
</table>

W3C Membership

Type Americas Europe Pacific Total

Full 62 29 17 108

Affiliate 240 123 47 410

Total 302 152 64 518

-- 53 --
© Oxford Brookes University 2003

The result is:
W3C Membership

Type Americas Europe Pacific Total

Full 62 29 17 108

Affiliate 240 123 47 410

Total 302 152 64 518

-- i --
© Oxford Brookes University 2003

Appendix A

References
There are some useful Web sites relevant to CSS:

1. http://www.w3.org/Style/CSS
The W3C CSS Web Site which contains up-to-date links to anything relevant to CSS.

2. http://www.w3.org/TR/REC-CSS1
Cascading Style Sheets, level 1 Recommendation, December 1996 (updated January 1999)

3. http://www.w3.org/TR/REC-CSS2/
Cascading Style Sheets, level 2 CSS 2 Specification, May 1998.

4. Cascading Style Sheets: Designing for the Web (2nd Edition), Hakon Wium Lie and Bert Bos
Addison Wesley, 1999.

5. http://www.w3.org/TR/CSS21/
Cascading Style Sheets, level 2 revision 1 CSS 2.1 Specification, Working Draft, January 2003

6. http://www.w3.org/Style/CSS/current-work
Cascading Style Sheets, level 3 CSS 3 Module Descriptions

7. http://www.blooberry.com/indexdot/css/
Indexdot CSS Index

8. http://www.westciv.com/style_master/academy/css_tutorial/index.html
A tutorial from Western Civilisation

9. http://www.westciv.com/style_master/house/CSS_gallery.html
plus a Gallery of sites

10. http://www.htmlhelp.com/reference/css/
Web Design Group Introduction

11. http://www.ericmeyeroncss.com/links/resources.html>
Eric Meyer's list of Resources

12. http://www.glasshaus.com/samplechapters/1221/default.asp
CSS Chapter from glasshaus's Web Professional's Handbook

13. http://www.glasshaus.com/bookInfo.asp?bookId=59
Cascading style Sheets by Owen Briggs et al (2nd Edition) Autumn 2003

14. http://www.csszengarden.com/
CSS Zen Garden Site

-- ii --
© Oxford Brookes University 2003

Appendix B: Quick Reference Guide

l B.1 Syntax
l B.2 Defnitions
l B.3 Properties
l B.4 Syntax

B.1 Syntax

a b c
a is followed by b is followed by c, in that order.

a | b
either a or b must occur

a || b
either a or b or both must occur, in any order

[a b]
brackets, used for grouping

a?
a is optional

a*
a is repeated 0 or more times

a+
a is repeated 1 or more times

a{1,4}
a is repeated 1 to 4 times.

B.2 Definitions

Block-level elements
an element which has a line break before and after (e.g. <h1>, <p>)

Replaced element
an element which is replaced by content pointed to from the element. E.g., .

B.3 Properties
In each definition:

l The default value is shown in bold, or given separately
l Values apply to all elements unless otherwise stated
l Properties are inherited unless the property name is emphasised.
l Most properties can have a value inherit. These have been omitted to simplify the descriptions.

-- iii --
© Oxford Brookes University 2003

Name Meaning

absolute-size xx-small | x-small | small | medium | large | x-large | xx-large

absolute-unit mm | cm | in | pt | pc

background <background-color> || <background-image> || <background-repeat> ||
<background-attachment> || <background-position>

background-
attachment

scroll | fixed

background-color <color> | transparent

background-image <url> | none

background-
position

[<percentage> | <length>]{1,2} | [top | center | bottom] || [left | center | right]

background-repeat repeat | repeat-x | repeat-y | no-repeat

border <border-width> || <border-style> || <color>

border-bottom <border-bottom-width> || <border-style> || <color>

border-bottom-
width

thin | medium | thick | <length>

border-color |
transparent

<color>{1,4}

border-left <border-left-width> || <border-style> || <color>

border-left-width thin | medium | thick | <length>

border-right <border-right-width> || <border-style> || <color>

border-right-width thin | medium | thick | <length>

border-style none | dotted | dashed | solid | double | groove | ridge | inset | outset

border-top <border-top-width> || <border-style> || <color>

border-top-width thin | medium | thick | <length>

border-width [thin | medium | thick | <length>]{1,4}

clear none | left | right | both

color <color>

color <color-name> | <rgb>

color-name aqua | black | blue | fuchsia | gray | green | lime | maroon | navy | olive | purple |
red | silver | teal | white | yellow | orange

cursor [<url> | auto | crosshair | default | pointer | move | e-resize | ne-resize | nw-
resize | n-resize | progress | se-resize | sw-resize | s-resize | w-resize| text | wait
| help

display inline | block | list-item | inline-block | none

float left | right | none

font [<font-style> || <font-variant> || <font-weight>]? <font-size> [/ <line-height>]?
<font-family>

font-family [<family-name> | <generic-family>] [, [<family-name> | <generic-family>]]*

font-size <absolute-size> | <relative-size> | <length> | <percentage>

font-style normal | italic | oblique

font-variant normal | small-caps

font-weight normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 |
900

-- iv --
© Oxford Brookes University 2003

Name Meaning

generic-family serif | sans-serif | cursive | fantasy | monospace

height <length> | <percentage> | auto

length [+|-]?<number><unit>

letter-spacing normal | <length>

line-height normal | <number> | <length> | <percentage>

list-style [<list-style-type> || <list-style-position> || <list-style-image>]

list-style-image <url> | none

list-style-position inside | outside

list-style-type disc | circle | square | decimal | lower-roman | upper-roman | lower-alpha |
upper-alpha | none

margin [<length> | <percentage> | auto] {1,4}

margin-bottom <length> | <percentage> | auto

margin-left <length> | <percentage> | auto

margin-right <length>| <percentage> | auto

margin-top <length> | <percentage> | auto

number <digit>+[.<digit>*]?

padding [<length> | <percentage>] {1,4}

padding-bottom <length> | <percentage>

padding-left <length> | <percentage>

padding-right <length> | <percentage>

padding-top <length> | <percentage>

percentage <number>%

relative-size larger | smaller

relative-unit em | ex | px

rgb #<hex><hex><hex> | #<hex><hex><hex><hex><hex><hex> | rgb(<number>,
<number>, <number>) | rgb(<percentage><percentage><percentage>)

text-align left | right | center | justify

text-decoration none | [underline || overline || line-through || blink]

text-indent <length> | <percentage>

text-transform capitalize | uppercase | lowercase | none

unit <absolute-unit> | <relative-unit>

url url(<quote>? <text> <quote>?)

vertical-align baseline | sub | super | top | text-top | middle | bottom | text-bottom |
<percentage>

white-space normal | pre | nowrap| pre-wrap | pre-line

width <length> | <percentage> | auto

word-spacing normal | <length>

-- v --
© Oxford Brookes University 2003

Appendix C: CSS Colour Keywords

The following table gives the set of keywords that are likely to be support by browsers. The minimal set
are emphasised.

Colour Name RGB Value Colour Name RGB Value

aliceblue (240, 248, 255) darkslategrey (47, 79, 79)

antiquewhite (250, 235, 215) darkturquoise (0, 206, 209)

aqua (0, 255, 255) darkviolet (148, 0, 211)

aquamarine (127, 255, 212) deeppink (255, 20, 147)

azure (240, 255, 255) deepskyblue (0, 191, 255)

beige (245, 245, 220) dimgray (105, 105, 105)

bisque (255, 228, 196) dimgrey (105, 105, 105)

black (0, 0, 0) dodgerblue (30, 144, 255)

blanchedalmond (255, 235, 205) firebrick (178, 34, 34)

blue (0, 0, 255) floralwhite (255, 250, 240)

blueviolet (138, 43, 226) forestgreen (34, 139, 34)

brown (165, 42, 42) fuchsia (255, 0, 255)

burlywood (222, 184, 135) gainsboro (220, 220, 220)

cadetblue (95, 158, 160) ghostwhite (248, 248, 255)

chartreuse (127, 255, 0) gold (255, 215, 0)

chocolate (210, 105, 30) goldenrod (218, 165, 32)

coral (255, 127, 80) gray (128, 128, 128)

cornflowerblue (100, 149, 237) grey (128, 128, 128)

cornsilk (255, 248, 220) green (0, 128, 0)

crimson (220, 20, 60) greenyellow (173, 255, 47)

cyan (0, 255, 255) honeydew (240, 255, 240)

darkblue (0, 0, 139) hotpink (255, 105, 180)

darkcyan (0, 139, 139) indianred (205, 92, 92)

darkgoldenrod (184, 134, 11) indigo (75, 0, 130)

darkgray (169, 169, 169) ivory (255, 255, 240)

darkgreen (0, 100, 0) khaki (240, 230, 140)

darkgrey (169, 169, 169) lavender (230, 230, 250)

darkkhaki (189, 183, 107) lavenderblush (255, 240, 245)

darkmagenta (139, 0, 139) lawngreen (124, 252, 0)

darkolivegreen (85, 107, 47) lemonchiffon (255, 250, 205)

darkorange (255, 140, 0) lightblue (173, 216, 230)

darkorchid (153, 50, 204) lightcoral (240, 128, 128)

darkred (139, 0, 0) lightcyan (224, 255, 255)

darksalmon (233, 150, 122) lightgoldenrodyellow (250, 250, 210)

darkseagreen (143, 188, 143) lightgray (211, 211, 211)

darkslateblue (72, 61, 139) lightgreen (144, 238, 144)

darkslategray (47, 79, 79) lightgrey (211, 211, 211)

-- vi --
© Oxford Brookes University 2003

Colour Name RGB Value Colour Name RGB Value

lightpink (255, 182, 193) paleturquoise (175, 238, 238)

lightsalmon (255, 160, 122) palevioletred (219, 112, 147)

lightseagreen (32, 178, 170) papayawhip (255, 239, 213)

lightskyblue (135, 206, 250) peachpuff (255, 218, 185)

lightslategray (119, 136, 153) peru (205, 133, 63)

lightslategrey (119, 136, 153) pink (255, 192, 203)

lightsteelblue (176, 196, 222) plum (221, 160, 221)

lightyellow (255, 255, 224) powderblue (176, 224, 230)

lime (0, 255, 0) purple (128, 0, 128)

limegreen (50, 205, 50) red (255, 0, 0)

linen (250, 240, 230) rosybrown (188, 143, 143)

magenta (255, 0, 255) royalblue (65, 105, 225)

maroon (128, 0, 0) saddlebrown (139, 69, 19)

mediumaquamarine (102, 205, 170) salmon (250, 128, 114)

mediumblue (0, 0, 205) sandybrown (244, 164, 96)

mediumorchid (186, 85, 211) seagreen (46, 139, 87)

mediumpurple (147, 112, 219) seashell (255, 245, 238)

mediumseagreen (60, 179, 113) sienna (160, 82, 45)

mediumslateblue (123, 104, 238) silver (192, 192, 192)

mediumspringgreen (0, 250, 154) skyblue (135, 206, 235)

mediumturquoise (72, 209, 204) slateblue (106, 90, 205)

mediumvioletred (199, 21, 133) slategray (112, 128, 144)

midnightblue (25, 25, 112) slategrey (112, 128, 144)

mintcream (245, 255, 250) snow (255, 250, 250)

mistyrose (255, 228, 225) springgreen (0, 255, 127)

moccasin (255, 228, 181) steelblue (70, 130, 180)

navajowhite (255, 222, 173) tan (210, 180, 140)

navy (0, 0, 128) teal (0, 128, 128)

oldlace (253, 245, 230) thistle (216, 191, 216)

olive (128, 128, 0) tomato (255, 99, 71)

olivedrab (107, 142, 35) turquoise (64, 224, 208)

orange (255, 165, 0) violet (238, 130, 238)

orangered (255, 69, 0) wheat (245, 222, 179)

orchid (218, 112, 214) white (255, 255, 255)

palegoldenrod (238, 232, 170) whitesmoke (245, 245, 245)

palegreen (152, 251, 152) yellow (255, 255, 0)

 yellowgreen (154, 205, 50)

