
DOM Primer Part 1

© Oxford Brookes University 2002

Contents

l 1. Introduction
¡ 1.1 Motivation
¡ 1.2 Basic ideas
¡ 1.3 DOM Levels

l 2. Core and HTML
¡ 2.1 Introduction
¡ 2.2 Traversal methods
¡ 2.3 Changing the structure of a document

l 3. HTML DOM, Attributes and Content
¡ 3.1 Introduction
¡ 3.2 Structure manipulation
¡ 3.3 Methods for changing attributes

l 4. DOM Level 2
¡ 4.1 Introduction
¡ 4.2 Core
¡ 4.3 Event model

l 5. Window Manipulation

Appendices

l A. The Core DOM
l B. The HTML DOM

-- 1 --
© Oxford Brookes University 2002

1. Introduction

l 1.1 Motivation
l 1.2 Basic ideas
l 1.3 DOM levels

1.1 Motivation
After the Web had gained initial acceptance and popularity through the presentation of static pages of
information, content creators and Web developers wanted more - namely dynamic content, content that
would change over time and content that would change in response to user interaction with the Web page,
for example moving the mouse over particular regions of the page. There are two obvious ways to achieve
such enhancements:

l by adding extra tags to the markup language to enable dynamic effects to be described declaratively;
l by providing an interface and a scripting language to enable dynamic effects to be achieved by

executing a program in the web client initiated when the Web page is loaded.

Early extensions to Netscape and Internet Explorer exemplified these approaches. Navigator 2 and the
JavaScript language allowed Web pages to be modified on the client. Navigator 3 allowed the attributes of
the img tag to be changed dynamically in response to mouse movements, for example:

 <a href="dhtml1.htm"
 onMouseOver="document.images['logo'].src='up.gif'"
 onMouseOut="document.images['logo'].src='right.gif'">

The effect is to change the image displayed to up.gif when the mouse enters the region bounded by the
image right.gif and change it back to right.gif when the mouse moves out of the region.

The usual problem in computing soon emerged: different manufacturers produced different extensions and
the job of authoring pages that would behave correctly across different browsers became exceedingly
difficult, if not impossible. Furthermore, different scripting languages came along, including JavaScript,
Python and Perl. XML appeared, and markup languages described within the XML framework such as
Scalable Vector Graphics (SVG) and Mathematical Markup Language (MathML) started to be developed
and these too required dynamic facilities. Thus there was a need to develop a standard language-neutral
(i.e. not tied to any particular scripting language) Application Program Interface (API) through which a
scripting language could access all the information in a Web document. The Document Object Model (DOM)
is the result.

1.2 Basic Ideas
The key idea in the DOM is to represent a Web document as a tree structured collection of objects. If one
thinks of the parse tree that would be generated by parsing, say, a HTML document, one can see where this
idea stems from. It is important to understand that this representation of a Web document is a logical
representation. The DOM does not prescribe that Web browser manufacturers must implement Web
documents as tree structured collections of objects. This is just the way in which the interface is described.
How browsers represent documents internally and provide the functionality of the DOM API is for individual
manufacturers to decide. Methods are provided in the DOM to enquire about the object tree and to modify it.
Such methods are typically invokved from a scripting language, such as JavaScript, in response to user
input.

The document tree for a simple HTML document is shown below. The text content of the title, h1 and p
nodes appears as text nodes in the tree, but these are not shown in this figure which is intended to capture
the overall shape of the tree.

-- 2 --
© Oxford Brookes University 2002

A Web document is therefore represented as a document tree. Each node in the tree is an object in the
object-oriented programming sense. Data are hidden so that they cannot be manipulated directly and
functions (methods) are associated with the object to manipulate the data it contains. The DOM thus
identifies:

l the interfaces and objects used to represent and manipulate a document;
l the semantics of these interfaces and objects - including both behaviour and attributes;
l the relationships and collaborations among these interfaces and objects.

A DOM object is a collection of named pieces of data. Named values are called properties, for example the
property nodeName holds the name of a node object. Methods are properties which are functions, for
example appendChild is a method that can be applied to a node to add a new node to the sequence of child
nodes of that node.
The DOM as noted earlier, is language independent. The DOM API can, in principle, be bound to any
scripting language. In what language, therefore, should the DOM itself be defined? The approach taken is to
define the DOM using a language called IDL - Interface Definition Language - which was developed by the
Object Management Group (OMG) in connection with the distributed object system, CORBA. Essentially IDL
provides a language for defining datatypes and objects in terms of their properties and the signatures
(parameter types and result type) of their methods. An extract from the IDL definition of the Node interface
(which includes the appendChild method) is given below. Objects in this class have a number of properties
(readonly attributes) and methods including appendChild and hasChildNodes. The appendChild method
takes a parameter of type Node and returns value of type Node. The method hasChildNodes takes no
parameters and returns a value of type boolean.

-- 3 --
© Oxford Brookes University 2002

interface Node {
 //NodeType
 const unsigned short ELEMENT_NODE = 1;
 ...
 readonly attribute DOMString nodeName;
 ...
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 ...
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
};

Language bindings to ECMAScript (a standardised JavaScript) and Java are defined in the W3C DOM
documents. The ECMAScript binding for part of the IDL interface given above follows.

Object Node
The Node object has the following properties:
 nodeName
 This property is of type String.
 parentNode
 This property is of type Node.
 childNodes
 This property is of type NodeList.
 ...
The Node object has the following methods:
 appendChild(newChild)
 This method returns a Node.
 The newChild parameter is of type Node.
 hasChildNodes()
 This method returns a boolean.
 ...

To simplify this Primer, the DOM is explained using the ECMAScript binding, rather than the IDL definitions.

1.3 DOM Levels
The World Wide Web Consortium (W3C) are developing the DOM specification. The first specification,
known as DOM Level 1 was published on 1 October 1998, and a second edition (with editorial, but not
technical changes) is (still) under development. The second level of the specification was published in
November 2000 and work on a third level is in hand! The specifications are freely available as HTML, pdf
and PostScript documents at the W3C Web site http://www.w3.org/DOM/. Robin Covers' XML Pages
http://www.oasis-open.org/cover/dom.html contain good background and summary information on the DOM.
DOM Level 1 is in two parts: Core and HTML. The Core provides a set of low-level fundamental interfaces
that can represent any structured document and extended interfaces for representing an XML document.
The HTML section provides additional, higher level, interfaces that are used with the Core interfaces to
provide a more convenient view of a HTML document.
DOM Level 2 is an extension of DOM Level 1. The Core interfaces of Level 1 have been extended to include
support for XML namespaces. (Namespaces are a mechanism for identifying and distinguishing elements
belonging to different types of markup in a document, for example SMIL and SVG.) Other parts of DOM
Level 2 deal with Events, Style, Traversal and Range, and Views. A sixth part, HTML, is under development,
but nearing completion.
DOM Level 3 is an extension of Level 2 and includes access to entities, DTDs and Schemas and keyboard
events. Four parts: Core, Load and Save, Validation, Events, and XPath are at Working Draft stage. Events
and XPath are the most advanced.
DOM specifications to provide specific functionality for Scalable Vector Graphics (SVG), Mathematical
Markup Language (MathML) and Synchronized Multimedia Language (SMIL) are also available as W3C
Recommendations and are published in these standards.

In this Primer we focus on the Core and HTML interfaces.

-- 4 --
© Oxford Brookes University 2002

The Appendices to this document give a fairly complete description of the ECMAScript bindings of the main
interfaces defined in the Core (levels 1 and 2) and HTML (level 1) DOM. It is important to realize that not all
browsers yet implement all the interfaces as specified and some implement proprietary
extensions/variations.

-- 5 --
© Oxford Brookes University 2002

2. General Methods

l 2.1 Introduction
l 2.2 Traversal methods
l 2.3 Changing the structure of a document

2.1 Introduction
The functionality of the DOM falls into three major groups:

1. methods for traversing the document tree;
2. methods for changing the structure of the document tree;
3. methods for retrieving and changing the values associated with the nodes of the tree.

In addition, the HTML DOM provides methods specific to particular types of node, for example to get the
attribute values of an HTML element node.
There are variations between browsers and versions of browsers. The examples in this Primer are written
with Internet Explorer 6.0 in mind, though many also work with Mozilla. Opera currently has rather less DOM
functionality than IE and Mozilla.

2.2 Traversal methods
Traversal methods enable a script to locate particular nodes within a document tree. The root of the
document tree is accessed by the property:

document

The most important traversal methods are listed below. The notation name:Type is used to indicate that the
parameter entity name has data type Type.

nodeName
Returns name of node

nodeType
Returns type of node. (Values of node types are listed in Appendix A)

nodeValue
Returns value of node

parentNode
Returns reference to parent node

firstChild
Returns reference to first child in list of child nodes

lastChild
Returns reference to last child in list of child nodes

previousSibling
Returns reference to node preceding this node. If none, returns null

nextSibling
Returns reference to node after this node. If none, returns null

hasChildNodes()
Returns true if node has child nodes

childNodes
Returns list of child nodes

getElementById(id:String)
Returns reference to object with id "id"

getElementsByTagName(tag:String)
Returns array of references to objects with tag name "tag"

The following methods are available for manipulating lists of object references.

item(num)
[num]

Return reference to item num in list of child nodes (starting from 0)
length

Returns length of a list

-- 6 --
© Oxford Brookes University 2002

Consider the following Web document:

<html lang="en-uk">
<head>
<title>...</title>
<link ...>
</head>
<body>
<table class="slide" width="100%">
...
</table>

<div class="slidebody">

 <script language="JavaScript">
 ...
 </script>
 <h2 id="myh2">My test line</h2>
 ...

The corresponding DOM tree has the shape:

document
html [0]
 head [0]
 title [0]
 link [1]
 body [1]
 table [0]
 ...
 div [1]
 script [0]
 h2 [1]

The numbers in brackets after each element indicate the position of the element in its parent's list of
children. The object corresponding to the h2 element can be located using:

document.childNodes[0].childNodes[1].childNodes[1].childNodes[1]

Addressing the h2 tag works as follows:

l document identifies the root of the tree.
l childNodes[0] identifies the node corresponding to the html element.
l childNodes[1] identifies the node corresponding to the body element.
l childNodes[1] identifies the node corresponding to the div element.
l childNodes[1] identifies the node corresponding to the h2 element.

Alternatively the node corresponding to the h2 element can be located using:

document.getElementsByTagName("h2")[0]

or

-- 7 --
© Oxford Brookes University 2002

document.getElementById("myh2")

Some points to note about these different approaches:

1. The first approach requires the precise structure of the DOM tree to be known. It is not unknown in
the current state of DOM implementations for different browsers to produce different DOM
representations of the same Web document. Any change to the document is likely to require changes
to the script.

2. In the second approach, if the document contains more than one node of a particular type, the script
writer needs to know which one is required. Changing the document dynamically may also change
which is required.

3. In the third approach, element identifiers are unique within a document and hence this approach gives
an easy way to locate a particular element, but clearly requires collaboration between script writer and
document author to assign identifiers to appropriate elements.

2.3 Changing the structure of a document
The structure of a document can be changed by inserting new elements into the document, and replacing
existing elements. The following Core DOM methods are available for this purpose.

createElement
Creates an element of the defined type

createTextNode
Creates a text node (the content of, say, an h2 element)

appendChild
Adds a new child at the end of the list of children

insertBefore
Inserts child node before the one specified

replaceChild
Replaces a child node by the one specified

Consider a HTML document containing:

<ul id="ulorig">
 First item
 <li id="listrepl">The one before the one to be replaced
 Third item
 <li id="listorig">The one after the insertion
 Fourth item
 Fifth element

This corresponds to:

l First item
l The one before the one to be replaced
l Third item
l The one after the insertion
l Fourth item
l Fifth element

A new item can be inserted before the list element with identifier 'listorig' ("The one after the insertion") using
the JavaScript code:

-- 8 --
© Oxford Brookes University 2002

 var newitem=document.createElement("li");
 var newtext=document.createTextNode("This is a new item");
 newitem.appendChild(newtext);
 document.getElementById("ulorig").insertBefore(
 newitem,document.getElementById("listorig"));

The result is:

l First item
l The one before the one to be replaced
l Third item
l This is a new item
l The one after the insertion
l Fourth item
l Fifth element

Some points to note:

1. The first two lines of code create new object nodes in the document tree, representing a list item node
and a text node respectively. The createElement and createTextNode methods do not link the nodes
created into the tree. They create in effect two separate one node trees.

2. The variables newitem and newtext contain object references to the nodes created.
3. The third line of code links the "li" node and the text node, so that the text node becomes a child of

the "li" node.
4. The fourth line of code links the "li" node into the document tree, as a child of the ul element with

identifier "ulorig". The node is inserted before the specified child (the child with identifier "listorig").
5. Note that the getElementById method takes an argument which is a string, whereas the two

arguments of insertBefore are references to nodes.

A new child can be appended at the end of the list using the code:

 var newitem1=document.createElement("li");
 var newtext1=document.createTextNode("This is a new item");
 newitem1.appendChild(newtext1);
 document.getElementById("ulorig").appendChild(newitem1);

A new subtree (li node and text content node) is created as in the previous example, and appended to the
list of children of the "ul" tag by applying the appendChild method to the node representing the "ul" element.
When this code is invoked after the previous code, the result is:

l First item
l The one before the one to be replaced
l Third item
l This is a new list item
l The one after the insertion
l Fourth item
l Fifth element
l This is a new item

-- 9 --
© Oxford Brookes University 2002

The third element in the list ("The one to be replaced") can be replaced using the code:

 var newitem2=document.createElement("li");
 var newtext2=document.createTextNode("This is a replacement item");
 newitem2.appendChild(newtext2);
 document.getElementById("ulorig").replaceChild(newitem2,
 document.getElementById("repl"));

When this code is invoked after the previous code the result is:

l First item
l The one before the one to be replaced
l This is a replacement item
l This is a new item
l The one after the insertion
l Fourth item
l Fifth element
l This is the last item

Just to illustrate the use of other traversal methods, the element to be replaced could also have been
specified as:

 document.getElementById("listrepl").nextSibling

The method splitText can be applied to a textNode to split the node into two. The node is split after a
specified character offset (which starts from zero). The example below splits the string "Add emphasis here"
at the start of the word "here", then inserts an em node with the word "here" as its text content.
The document contains initially:

<p id="p1">Add emphasis here</p>

The code to modify the document tree is:

var p1node = document.getElementById("p1");
var textnode = p1node.childNodes.item(0);
textnode.splitText(13);
var textnode1 = p1node.childNodes.item(1);
var bnode = document.createElement("em");
bnode.appendChild(textnode1.cloneNode(true));
p1node.replaceChild(bnode, textnode1);

The method cloneNode(deep:boolean) returns a duplicate of the specified node. The method serves as a
generic copy constructor for nodes of any type. The node returned has no parent, i.e. it is not linked into the
DOM tree. When a node is cloned, all the attributes and values of the node are copied. The parameter deep
determines whether a deep (true) or shallow (false) copy is made. A deep copy recursively clones the
subtree under the specified node. A shallow copy just clones the node itself. Note that according to the DOM
Recommendation, if the node is a text node, the text will only be copied if a deep clone is made, since the
text is contained in a child text node.

The difference between deep and shallow copy can be seen in the next example. Consider the function
clone defined as follows.

-- 10 --
© Oxford Brookes University 2002

function clone(elemid, deep) {
 var para1ref = document.getElementById("p1");
 var divref = document.getElementById(elemid);
 divref.appendChild(para1ref.cloneNode(deep));
}

If this function is applied to the following HTML fragment:

<div id="d1">
 <p id="p1">Some text emphasised here</p>
</div>
<div id="d2"></div>
<div id="d3"></div>

invoked as clone('d2', true) the result is to clone a copy of the p element and its subtree and append the
copy as a child of the div element with id attribte d2. The presentation effect is:

Some text emphasised here
Some text emphasised here

If the function is then invoked as clone('d3', false), only the p node is copied, there is no content and hence
the visual appearance of the document does not change.
The DOM trees corresponding to these cases are shown in the table below.

Initial tree Deep clone
clone('d2', true)

Deep followed by Shallow clone
clone('d2', true);
clone('d3', false)

DIV
 P
 #text
 EM
 #text
DIV
DIV

DIV
 P
 #text
 EM
 #text
DIV
 P
 #text
 EM
 #text
DIV

DIV
 P
 #text
 EM
 #text
DIV
 P
 #text
 EM
 #text
DIV
 P

-- 11 --
© Oxford Brookes University 2002

3. HTML DOM, Attributes and Content

l 3.1 Introduction
l 3.2 Structure manipulation
l 3.3 Methods for changing attributes

3.1 Introduction
Most of the objects, properties and methods described so far are in the Core DOM. The HTML DOM extends
the Core DOM with properties and methods for manipulating HTML content. Some of these manipulations
can be achieved using Core DOM methods, but the HTML DOM methods may be more convenient.

3.2 Structure manipulation
The root of a HTML document is a HTMLDocument object. Properties of this object give links into elements
inthe document and the object provides methods which allow the structure of the document to be extended
or replaced using strings of unparsed HTML. The HTML DOM defines objects corresponding to the HTML
element types. HTML attributes are then exposed as properties on the element objects.

The main properties of HTMLDocument object are shown below.

title
Document title as specified in TITLE element

URL
Complete URI of the document

body
Element that contains the content (BODY or outermost FRAMESET element)

images
List of all IMG elements in document

links
List of all AREA and anchor (A) elements with a value for href attribute

forms
List of all the forms of a document

anchors
List of all anchor (A) elements with a value for the name attribute

cookies
Cookies associated with a document

Thus the title of a document can be retrieved using:

document.title

The width and height of the first image in a document can be retrieved using:

document.images.item(0).width
document.images.item(0).height

The content of a document can be completely replaced using methods on the HTMLDocument object. The
text parameter is an unparsed string of HTML text. The following methods to support this are available on
HTMLDocument.

-- 12 --
© Oxford Brookes University 2002

open
Opens a document stream for writing

write(text:String)
Add a text string (which is parsed according to the document's structure model) to the document stream

writeln(text:String)
As above, but adds newline character to end of string

close
Close document stream

The example below illustrates their usage.

document.write("<html><head><title>New Page</title> </head><body><h1>New
Heading</h1></body></html>");

will replace the current document with the new document specified in the parameter to the write method. The
writing stream is closed using the close method.

document.close

3.3 Methods for changing attributes
The HTML DOM provides methods for changing the attributes of an element and the content of an element.
As noted earlier, each HTML element has a corresponding object type. HTML attributes are exposed as
properties on the element object. Property names are independent of the case of the attribute in the source
document and follow some naming rules.
Methods on element objects include:

getAttribute(name:String)
Returns attribute value as String

setAttribute(name:String, value:String)
Sets specified attribute to specified value

removeAttribute(name:String)
Removes specified attribute

Attribute values can also be retrieved and set using the property directly

elem.propertyName
elem.propertyName = value

Consider:

<script>
 function RunScript1(){
 document.getElementById("mylink").href="ref2.htm";
 }
 function RunScript2(){
 document.getElementById("mylink").setAttribute("href", "ref2.htm");
 }
</script>

<h2 id="myh2">My test line</h2>

The effect of both functions is to change the value of the href attribute to ref2.htm

-- 13 --
© Oxford Brookes University 2002

Consider the following:

<style type="text/css">
#pid1 {color:red}
#pid2 {color: yellow}
</style>
<script language="JavaScript" type="text/javascript">
function change1() {
 document.getElementById("pid2").id = "pid1";
}

function change2() {
 document.getElementById("pid1").id = "pid2";
}
</script>

<p id="pid1">Text string</p>

The effect is to change the value of the id attribute of the p element, in the first case from pid2 to pid1 and in
the second the reverse. Note how changing the attribute changes the appearance of the primitive. The style
sheet declares that an element with an id attribute with value pid1 has colour red, whereas an element with
an id attribute with value pid2 has colour yellow. Changing the attribute changes the colour.
Attributes can also be removed from elements. For example:

<script language="JavaScript">
function RemAttr(){
 document.getElementById("auth1").removeAttribute("style");
}
</script>

<p id="auth1" style="color:green;">Author: David Duce</p>

The effect is to remove the style from the p element and which causes its appearance to revert to the normal
style for that element.
The content of an element can be hidden in the presentation by setting the visibility property of the element
to hidden. For example applying the function:

function hide(){
 document.getElementById("auth1").style.visibility="hidden";
}

to:

<p>The DOM Made Complicated</p>
<p id="auth1" style="visibility:visible;">Author: David Duce</p>
<p>Date: October 2001</p>
<p>

will produce the presentation:

-- 14 --
© Oxford Brookes University 2002

The DOM Made Complicated

Date: October 2001

Note that although the text "Author: David Duce" is now hidden, space has been allocated where the text
would have appeared. In order to remove space allocated to the text, i.e. to reflow the document, the display
property has to be set to the value none.

function reflow() {
 document.getElementById("auth1").style.display="none";
}

This will produce the presentation:

The DOM Made Complicated
Date: October 2001

The appearance of the document could be restored using:

function reset() {
 document.getElementById("auth1").style.visibility="visible";
 document.getElementById("auth1").style.display="";
}

The innerText method is used to change the content text of a HTML element, although this method does not
appear to be defined in the W3C DOM Recommendation. For example the content "My Test Title" of the h2
element:

<h2 id="myh2">My Test Title</h2>

can be changed to "My New Test Title" using:

<document.getElementById("myh2").innerText="My New Test Title";

Using DOM methods, the same effect can be achieved with:

var h1ref = document.getElementById("myh2");
var oldtextref = h1ref.firstChild;
var newtextref = document.createTextNode("My New Test Title");
h1ref.replaceChild(newtextref, oldtextref);

This code first creates a new text node element using createTextNode, then replaces the link to the old text
content with this new text content element.
Using these methods, we could write a JavaScript function to sort the rows of a table. For example the table:

-- 15 --
© Oxford Brookes University 2002

could be sorted by the title column (first column) using the JavaScript function:

function insertionSort(t, iRowStart, iRowEnd, fReverse)
{
 var iRowInsertRow, iRowWalkRow;
 for (iRowInsert = iRowStart + 1 ; iRowInsert <= iRowEnd ; iRowInsert++)
 {
 textRowInsert = t.children[iRowInsert].innerText;

 for (iRowWalk = iRowStart ; iRowWalk <= iRowInsert ; iRowWalk++)
 {
 textRowCurrent = t.children[iRowWalk].innerText;

 if (((!fReverse && textRowInsert <= textRowCurrent)
 || (fReverse && textRowInsert >= textRowCurrent))
 && (iRowInsert != iRowWalk))
 {
 eRowInsert = t.children[iRowInsert];
 eRowWalk = t.children[iRowWalk];
 t.insertBefore(eRowInsert, eRowWalk);
 iRowWalk = iRowInsert; // done
 }
 }
 }
}

The sort function could be invoked using:

<input type=button value="Sort By Title"
 onclick="insertionSort(Table1.children[0], 0,
 Table1.rows.length - 1, false)">

The Voice of the Atlas Aatabou, Najat CDORBD 069

French Blues Abshire, Nathan CD 373

The Essential Roy Acuff Acuff, Roy 48956

Qareeb Akhtar, Najma TERRACO 103

Aldina Aldina Fado C08

Segments Allen, Geri DIW-833

Azure-te Allyson, Karrin CCD-4641

-- 16 --
© Oxford Brookes University 2002

4. DOM Level 2

l 4.1 Introduction
l 4.2 Core
l 4.3 Event model

4.1 Introduction
DOM Level 2 extends the API defined in DOM Level 1. DOM Level 1 is contained in DOM Level 2. We will
not describe all the functionality of DOM Level 2 in this Primer, but aim instead to give a flavour of the key
developments.

4.2 Core
DOM Level 2 caters fully for the core requirements of XML, as well as HTML documents. The main
extension is to provide a way to handle documents containing elements from different XML namespaces.
The significance of namespaces will become clearer later in the course (in the term 2 XML modules), for
now it is enough to note that a document might contain, say, text, graphics and mathematics, and it is
necessary to be able to distinguish between the nodes for each, given that there is no requirement in XML
for element names to be unique across different languages.

The elements:

 <a:elementName xmlns:a="SomeURI"/>
 <b:elementName xmlns:b="AnotherURI"/>

each have the same name, "elementName", but they belong to different name spaces, and hence should
yield distinguishable nodes in the DOM tree. This is achieved in DOM Level 2 Core through the addition of
new properties and attributes to manage namespaces. The properties include: namespaceURI and prefix.
New methods include getElementByTagNameNS and createElementNS.

4.3 Event model
The DOM Level 2 provides a rich generalization of the basic idea that the document tree can be modified in
response to events such as mouse events. There are two components to this, the event model which
defines the basic mechanisms for event handling independently from the particular type of event being
handled and a set of event modules which populate the event model with particular types of event. These
aspects of the DOM are described in Part 2 of this Primer.

-- 17 --
© Oxford Brookes University 2002

5. Window Manipulation

Although not a part of the DOM, it is useful to note that browsers provide methods for manipulating windows.
These notes refer particularly to IE 6.0.
The Window object is a global object and the properties of this object are global variables in JavaScript. The
global variables window and self refer to the window object. Other properties include:

status
Text in status line

document
Reference to document object in window

history
Reference to user's browsing history for window

location
Reference to URL displayed; setting loads new document

name
Name of window

The methods include:

alert()
confirm()
prompt()

Display dialogue boxes
open(...)

Open window (see below for parameters)
close()

Close window
moveBy()
moveTo()

Move window
resizeBy()
resizeTo()

Resize window

An example using some of these methods follows.

var w = window.open("overview.htm", "newwin",
 "width=400, height=350, status=yes, resizeable=yes");
w.name = "My New Window";
w.status = "Demonstration in progress";

This will open a new resizeable window with width 400 pixels, height 350 pixels, in which the document
overview.htm will be displayed. The title of the window is set to "My New Window" and the status line to
"Demonstration in progress".

-- 18 --
© Oxford Brookes University 2002

A. The Core DOM

This section is a quick reference to the Core DOM ECMAScript binding. The properties and methods that
are most likely to be useful are listed. Note that this is NOT a complete listing of the Core DOM at either
Level 1 or Level 2, nor does inclusion of a property or method in this section indicate that it is available on all
browsers.
The notation name:Type is used to indicate that the parameter entity name has data type Type.

Object Document

Methods Return type Explanation

createElement(tagName:String) Element Creates new element

createDocumentFragment() DocumentFragment Creates a document fragment

createTextNode(data:String) Text Create text node

createAttribute(name:String) Attr Create attribute node

getElementsByTagName(tagName:String) NodeList Returns list of nodes with specified tag

getElementsById(elementId:String) Element Returns element with specified identifier

Object Node

Properties Property type Explanation

nodeName String Name of node

nodeValue String Value of node

nodeType short Type of underlying object

parentNode Node Parent of node. Document, document fragment and Attr do
not have parent node

childNodes NodeList References to all children of node

firstChild Node First child of node. null if none

lastChild Node Last child of node. null if none

previousSibling Node Node immediately preceeding this node. null if none

nextSibling Node Node immediately following this node. null if none

attributes NamedNodeMap Attributes of this node

ownerDocument Document document object associated with node

Methods Return type Explanation

insertBefore
(newChild:Node,
refChild:Node)

Node Inserts newChild before existing node refChild

replaceChild
(newChild:Node,
oldChild:Node)

Node Replaces child node oldChild with node newChild

removeChild
(oldChild:Node)

Node Removes the child indicated by oldChild

appendChild
(newChild:Node)

Node Add newChild to end of list of children of this node

hasChildNodes() boolean true if node has any children, false otherwise

cloneNode(deep:boolean) Node Returns a duplicate of the node. If deep is true, recursively
clones the subtree under the node, if false clones only nodes
(and attributes if an element)

-- 19 --
© Oxford Brookes University 2002

Object NodeList

Properties Property type Explanation

length int Number of nodes in list

Methods Return type Explanation

item(index: unsigned long) Node Returns specified item in list, or null if not a valid index

Object Attr
(all the properties and methods of Node plus the following)

Properties Property
type

Explanation

name String Name of attribute

specified boolean true if assigned value in document, false otherwise. If assigned default value in
DTD then that value is held in value property

value String true if assigned value in document, false otherwise. If assigned default value in
DTD then that value is held in value property

Object Element
(properties and methods of Node plus those below (incomplete list))

Properties Property
type

Explanation

tagName String Element tag name

Methods Return
type

Explanation

getAttribute(name:String) String Retrieves attribute value by name

setAttribute
(name:String,value:String)

void Adds new attribute, if already present, replaces existing
value

removeAttribute(name:String) void Removes the specified attribute. If attribute has a default
value, it is immediately replaced with that value

Object Text
(incomplete list)

Methods Return
type

Explanation

splitText(offset:int) Text Breaks text node to which applied into two. Afterwards this node
contains text up to offset, next sibling inserted into tree by
method contains remainder

setAttribute
(name:String,value:String)

void Adds new attribute, if already present, replaces existing value

removeAttribute(name:String) void Removes the specified attribute. If attribute has a default value, it
is immediately replaced with that value

Node types (incomplete list)

Node nodeType

Element 1

Text 3

Document 9

Comment 8

Attr 2

-- 20 --
© Oxford Brookes University 2002

B. The HTML DOM

The HTML DOM builds on the Core DOM. The main extension is that attributes of HTML elements are made
available as properties. The names of the properties correspond to the attribute names. The lists of
properties so created are extensive and will not be reproduced here.

The object type HTMLCollection has the following properties and methods.

Object HTMLDocument
(incomplete list))

Properties Property type Explanation

title String document title as specified in TITLE element

URL String complete URI of the document

body HTMLElement element that contains the content (BODY or outermost FRAMESET
element)

images HTMLCollection list of all IMG elements in document

links HTMLCollection list of all AREA and anchor (A) elements with a value for href attribute

forms HTMLCollection list of all the forms of a document

anchors HTMLCollection list of all anchor (A) elements with a value for the name attribute

cookies HTMLCollection Cookies associated with a document

Methods Return type Explanation

open() void opens document stream for writing

close() void closes document stream and forces rendering

write(text: String) void write string of text to document stream. Text is parsed into document's
structure model

writeln(text:
String)

void As write except string of text is followed by newline character

Object HTMLCollection

Properties Property type Explanation

length int Number of items in collection

Methods Return type Explanation

item(index: int) Node Returns index'th item of collection (starting from 0)

namedItem(name) void Returns named item in collection

