
HTTP Primer

© Oxford Brookes University 2002

Contents

l 1. Introduction
¡ 1.1 History
¡ 1.2 Caching and Proxies
¡ 1.3 Plug-ins and Helpers
¡ 1.4 Summary

l 2. Internet Protocol
¡ 2.1 Introduction
¡ 2.2 IP Addressing
¡ 2.3 Domain Name System

l 3. Transmission Control Protocol
¡ 3.1 Introduction
¡ 3.2 Socket Creation
¡ 3.3 Reliable Packet Transmission

l 4. HTTP/0.9 and HTTP/1.0
¡ 4.1 Introduction
¡ 4.2 GET
¡ 4.3 Headers
¡ 4.4 Responses
¡ 4.5 HEAD and POST Requests

l 5. HTTP/1.1
¡ 5.1 Introduction
¡ 5.2 Persistent Connection
¡ 5.3 Caching
¡ 5.4 Other Enhancements

Appendices

l A. References
l B. HyperText Transfer Protocol Design Issues

-- 1 --
© Oxford Brookes University 2002

1. Introduction

l 1.1 Basic Model
l 1.2 Caching and Proxies
l 1.3 Plug-ins and Helpers

1.1 Basic Model
In order for the Web to work, there was a need for a way of requesting Web pages and having them
delivered from a remote server to the browser. In December 1990 when the first web pages were served
from a server in CERN, the decision had already been made to use a very simple protocol called HyperText
Transfer Protocol (HTTP) running over the Internet using TCP/IP. Appendix B gives an early paper indicating
some of the design considerations. Routing the pages through the network and uniquely addreessing the
destination is done by the Internet Protocol (IP). Communication between the hosts is achieved by the
Transmission Control Protocol (TCP).
The HTTP architecture agreed is shown in Figure 1.1. Only the Client is allowed to make requests. It asks
the server on the Internet at the site www.w3.org to deliver the page file.htm to the Client for browsing. The
Server may be able to find the file (called a document or a page) and, if so, it will deliver it to the Client. If the
file cannot be located, an error response is sent instead.

Figure 1.1: Request/response Model of HTTP

The decision was made for HTTP to use TCP/IP as the underlying addressing and transportation system. IP
delivers packets over the Internet based on the IP addressing scheme (more of that later) which consists of a
32-bit number expressed as four bytes with the decimal value of each byte given (something like
127.23.56.96 where the four numbers are all less than 256). The mapping from the symbolic name
(www.w3.org) into the 32-bit IP address is achieved through a DNS Server (see Figure 1.2).

-- 2 --
© Oxford Brookes University 2002

Figure 1.2: Domain Name Server

1.2 Caching and Proxies
As soon as the web started getting used, it became clear that this simple model was not that efficient.
Suppose the user downloads a web page and then a second. If the user wants to refer back to the first page,
then the model as it stands would require the page to be requested again. In consequence, almost from day
one the possibility of having a cache of already downloaded web pages was seen as useful. When the user
hits the back button on the browser, the page is retrieved from a local cache on the computer running the
browser rather than request the page again. Browsers have over the years added other features such as
History files and Bookmark lists which also can make use of a local cache.
At the Server end, there is also a use for a cache. If the server has a large main memory, rather than retrieve
each file from disc, it is able to keep the last set of pages requested in main memory in order to improve its
response to users.
Organisations soon began to find that their staff were using the Web a great deal. In some cases this was
good news as they were accessing relevant information needed to do their job. Sometimes the staff were
downloading information of a more private nature, organising their holidays, purchasing goods etc. This led
to the introduction of a device called a proxy which to the Client looks like a Server and to a Server looks like
a Client. Proxies have a wide range of uses. They can be used to control what pages the organisation's staff
are allowed to access. If the proxy is placed on the firewall between the company's Intranet and the
Internet, it is possible to check what documents are being requested. The organisation can set up the
network so that all external requests go the proxy which onward routes the ones that the organisation is
happy with and sends back an unavailable error message otherwise.

-- 3 --
© Oxford Brookes University 2002

Figure 1.3: Caching and Proxies

Proxies also can contain caches. In this case, the cache serves a set of users rather than a single user. In an
organisation, it is likely that a set of users will request similar pages due to the nature of their work, so a
proxy cache also has value. User A requests a page that is stored in the proxy cache and when user B
requests the same page, it is returned from the proxy rather than requesting it from the Server. Figure 1.3
shows the overall arrangement of a site with a proxy cache.
If a proxy is of use to an organisation, it may also be of value to a Department, to an Internet service
Provider, to a Community and even a country. For example, the UK has an academic cache aimed at
reducing the traffic between the UK and the USA to lower the need for expensive bandwidth between the UK
and the USA. Some countries have national caches to censor information that arrives in the country.
Information cannot be left in a cache forever as eventually it will be out-of-date and the cache will fill up. The
Server may have updated a Web page but all the caches are still returning the old version. With the potential
of there being a whole series of caches between the user and the site from which a page is required,
mechanisms are needed to handle stale pages in the various caches and to ensure that pages of the
appropriate freshness are returned to the user. If the request is for a stock market price, the page must be
fresh. If it is for the local weather forecast, a delay of an hour may be OK. If it is to discover the length of a
metre in inches, a much longer period elapses before the page becomes invalid! It is only recently that the
problems of stale information have been largely cured on the Web by changes to HTTP.

1.3 Plug-ins and Helpers
With the arrival of the Mosaic browser, it became quite easy to embed graphical images in Web pages. This
has several repercussions on the simple request-response model. The Web page when it arrives is found to
have embedded images and these also need to be retrieved. The load on the Internet increases and the
images may need to be downloaded from different Web sites. Figure 1.4 shows the added complexity.

-- 4 --
© Oxford Brookes University 2002

On the network side, the single page download results in several requests and responses. On the Client
side, the browser either needs to be able to interpret the image arriving or upgrade itself to achieve this. The
simplest method of doing this is to add a plug-in to the Client that is capable of rendering the image
downloaded. The browser allocates an area of the page and the plug-in is responsible for painting the
pixels within that area. Even today, browsers accept some formats and not others and not all browsers can
install the same plug-ins. This leads to another use for the proxy. For example, if the browsers used by an
organisation do not support an image format like PNG but do support GIF, it is possible for the proxy to
provide a transformation between the original format and the one that can be supported.
Some additions to the Web page are sufficiently complex that the plug-in approach may not be sensible.
Examples are audio and video. The basic protocols designed for the Web are based on the assumption that
either the document is returned or it is not. There is no real concept of an approximation. With streaming
media it is feasible that some information can be lost and the algorithms used to download the information
may be different depending on the bandwidth available. In such cases, the browser employs a helper
application to handle a particular media type. the helper may download the file using a different
communication protocol from HTTP; a protocol better suited to the characteristics of the media type.

Figure 1.4: Images in Web Pages

1.4 Summary
So far we have looked at what initially appears to be quite a simple protocol requirement. The model is soon
complicated by the reality of how the Web is used in the real world where the bandwidth on the Internet is
limited and the requirements soon became more demanding.
In the history of the Web, we showed in Figure 1.5 the 7 layers of the ISO model and the equivalent Internet
protocols, particularly TCP/IP. Before looking at HTTP further, we will first look at the basic infrastructure
chosen to support HTTP, IP and TCP.

-- 5 --
© Oxford Brookes University 2002

Figure 1.5: ISO 7-Layer Model

-- 6 --
© Oxford Brookes University 2002

2. Internet Protocol

l 2.1 Introduction
l 2.2 IP Addressing
l 2.3 Domain Name System

2.1 Introduction
As we have already seen, the Internet is a network of networks. The problem IP is addressing is how to
achieve end-to-end communication across a potentially heterogeneous collection of intermediate networks
along the way. The Internet Protocol (IP) is the network-level protocol that underlies the Internet. The main
aim was to keep the Internet itself simple. IP defines an architecture based on sending individual packets
from one host to another. Each host has a unique name, its IP address. A packet knows where it came from
and where it is going. The IP header contains this information and it is followed by the data in the packet.
The Internet consists of a set of routers that accept packets, look at their destination and decide where to
route it next. No state is retained and it is feasible for the packet to arrive back at the same router. Routers
make decisions for each packet based on its current understanding of the state of the Internet. Thus packets
travel independently on different paths and they are likely to arrive at the host in a different order from when
they left. Packets may not all follow the same route, and routes are not necessarily of the same length.
Packets may be lost on the way or be corrupted when they arrive. If the Internet is congested, routers may
need to store packages before forwarding them. If a route gets overloaded, it will throw packets away in order
to relieve congestion.
By being so simple, IP can exist in a network environment that is overloaded and having transient failures.
Clearly for many applications, this unreliable and unordered delivery is a problem, as it is for the Web. In
consequence, sitting on top of IP is the Transmission Control Protocol (TCP) that has the problem of
ensuring that packets are delivered reliably and in the right order. We will talk about TCP later.

2.2 IP Addressing
IP addresses are 32 bit numbers that can be considered as mailing addresses. Apart from some
considerations that we do not need to bother about, the IP address refers to a specific machine on a defined
site. In consequence, it was sensible to divide the address into two parts. The first part defines the place on
the network where the specific machine sits and the second part, the host part, defines the machine at that
location. In consequence, the routers on the Internet only need to know the network part of the address and
can rely on the network at the site to deliver the package to the correct machine.
An organisation like Brookes will be allocated a set of IP addresses for its machines and, in a simple
situation, a single network address. Unfortunately things are not that simple. How many bits should be
allocated to the network part of the address and how many to the host part. Well that depends on the size of
the site. As this varies, different Classes of sites were defined early on that correspond to large, medium and
small sites. Figure 2.1 shows the Classes available:

Class A
Really large sites of up to 16 million machines. 8 bits are used for the network address and 24 for the host.

Class B
Medium size sites with up to 65000 machines. 16 bits are used for the network address and 16 for the
host.

Class C
Small organisations with up to 256 hosts. 24 bits are used for the network address and 8 bits are used for
the host.

The addresses are written with full stops between each octet value written in decimal.

-- 7 --
© Oxford Brookes University 2002

Figure 2.1: IP Addresses

It does not take long to realise that this allocation of addresses will not work long term. Restricting the
addresses to 32 bits and splitting them up in this way means that addresses will run out. Once everybody has
their phone, watch, coffee machine, refrigerator, toothbrush and razor needing an IP address, there is not
enough to go around. To slow down the problem, the restriction on fixed boundaries between the network
and host parts was abandoned and Classless InterDomain Routing (CIDR) was introduced. This allows the
split between the network and host part to be at any bit. Thus 124.86.153.201/22 defines an address where
the top 22 bits represent the network address and the lower 10 represent the host address. It does not solve
the problem but has meant it has gone away for a while.

2.3 IP Domain Name System
Host names on the Internet have the form www.w3.org and indicate more the type of organisation and where
it lives rather than its size and when it was allocated a set of IP addresses. In consequence there is a need to
translate from the host name part of the Universal Resource Locator (URL) to the IP address of that host.
The key point is that the solution must be scaleable. A solution that works for a small number of IP addresses
will not necessarily work as the number of connections grow. Figure 2.2 shows the hierarchical nature of the
Domain Name System (DNS) architecture. There is a single root node and underneath this are a set of top-
level domain names like com and org which define the type of the organisation and ones like uk and zw that
relate to a country (zw stands for Zimbabwe). Recently some new generic top-level domain names have
been introduced (aero, biz, coop, info, museum, name and pro). Underneath this top level are second-level
domains like ac for the academic community in the UK. Finally below that are even more subclassifications.
Thus brookes.ac.uk is a university in the academic sector of the UK.
Given the DNS name, to find the IP address requires somebody to have the translation from one to the other.
rather than have a single machine that handles all names (that would not work especially if it broke!), each
subtree in the DNS looks after its own translation and makes sure this carries on happening even if the
primary translator fails.

-- 8 --
© Oxford Brookes University 2002

Figure 2.2: Domain Name System

Figure 2.3: Conversion to IP Address

-- 9 --
© Oxford Brookes University 2002

Figure 2.3 shows how a browser at Brookes would find out the IP address of www.w3.org to request a page
from there. In its simplest form, the local name server at Brookes would contact the root to find out where the
name server for the org domain was. Having this information, it would ask it to give it the adress of w3 and
so on. It is possible to ask one name server to onward route the request but the general idea is the same.
The name servers tend to have caches of previous requests so that this rather long winded way of
establishing the address is not always required.
Just as a protocol is needed to route HTTP requests, the same is true for domain name translations. These
will tend to be simple. The packet sizes in each direction are small and one IP packet in each direction will do
the trick. The User Datagram Protocol (UDP) sitting on top of IP is good enough for the job. This is an
unreliable protocol. If you do not get a response, you need to make a judgement on how long to wait before
making the request again. The header just consists of the source, destination, length and a checksum. There
is no need to establish any long-term connection and it fits the bill for this activity. However it would not be
any use for HTTP that needs a better expectation of longer transmissions being completed successfully. To
do this it would need to repeat what other underlying protocols already provide.

2.4 IP Packets
Figure 2.4 shows the general structure of an IP packet. The data is preceded by a header that is normally 5
32-bit words (20 bytes) long. Most of the fields are self evident. The identification field contains a unique
value defined by the sender. If a packet has to be split to get through the Internet, this unique identification is
used to put it back together again. The fragment field is used to indicate which part of the split packet,
individual sections are. The Time To Live field is important as it defines how many hops the packet will take
before self disintegration. each router decrements the count by one. It provides a crude way of getting round
loops in the system. When the IP packet reaches the other end, it may be part of several protocols. We have
already talked about UDP and will talk about TCP. It is important to know where the packet is supposed to go
when it reaches its destination.

Figure 2.4: IP Header

-- 10 --
© Oxford Brookes University 2002

Figure 2.5: IP Packet Delivery

Figure 2.5 shows the progression of a set of packets through the Internet. The Client is almost certainly
connected to some Local Area Network and it reaches the outside world via a router which has a number of
options in trying to route the packet to W3C. Some of the packets will arrive at the remote site and the order
will be unknown. Some will be lost en route. The next question is how do we achieve reliable transmission
across the Internet. That is where TCP comes in.

3. Transmission Control Protocol

l 3.1 Introduction
l 3.2 Socket Creation
l 3.3 Reliable Packet Transmission

3.1 Introduction
The position of the Transmission Control Protocol (TCP) in the nature of things is shown in Figure 3.1. HTTP
expects requests to arrive and responses also. TCP's role is to achieve that despite its underlying
infrastructure (IP) being unreliable and unordered.
IP can be thought of as a set of buckets transmitting information from one place to another. The aim is for
TCP to turn the individual buckets into a drainpipe [4].
TCP achieves this by establishing a unique path between the Client and Server (called a socket) and then
ensuring that all packets are delivered, forcing a retransmission when packets appear to be lost. TCP does
all the work in solving the problems of packet loss, corruption and reordering that the IP layer may have
introduced.

-- 11 --
© Oxford Brookes University 2002

Figure 3.1: TCP's Role

3.2 Socket Creation
As we have seen, TCP can be thought of as a pipe delivering information reliably from one host to another.
TCP and other transport level protocols use the concept of a port. As the Internet only provides one address
for the computer, to carry on several separate transmissions at the same time, you need to differentiate
between them and this is the role of the port. All transmissions of a certain type use the same port number as
an extension of the internet addressing. Ports can be thought of as doors or letterboxes. A single house may
have several doors or letterboxes if the house has been divided up for multiple occupancy.
To allow the Client and Server to believe that they are reading and writing files, the concept of a socket is
introduced. Setting up a socket associated with a port allows the programs at each end to work as though
they are reading and writing local files.
Figures 3.2 shows packets being delivered by IP. The name of the protocol using the packet is contained
within the packet so it is easy to route the packets destined for TCP one way while those destined for UDP
go another route. The packets arriving at the TCP application may be destined for any number of different
transactions. Quite a few Clients will be requesting documents from the W3C web site.
Initially a unique connection needs to be set up between the Client and the Server. Many different uses of
TCP may be taking place and there is a need to establish a connection for the transmission of HTTP. By
convention port 80 is used for transmitting HTTP. At the Server end there is effectively a bell associated with
port 80 that can be rung by the remote Client to say that it wants to establish a port 80 connection. The
browser at the Client end may allow the user to download files and send mail as well. In this case there may
be multiple ports opened by the single Client using different ports on the Server.

-- 12 --
© Oxford Brookes University 2002

Figure 3.2: Selecting an Application

Figure 3.3: Establishing a TCP Connection

-- 13 --
© Oxford Brookes University 2002

Figure 3.3 shows the Client sending an IP packet enclosing a TCP packet that rings the bell to request a
connection. The Client sets up a Port with a unique number (2017 in this case) before sending the TCP SYN
packet. on receiving it, the Server sets up a real version of the port at its end (usually a real port 80, not just a
door bell but a real door!) to allow transmissions to go from the Client to the Server. Figure 3.4 shows the
port established and a SYN/ACK packet being send back to the Client. this acknowledges that the left-to-
right transmission has been set up and also requests a connection in the reverse direction. Once this arrives
at the server, the path is established and the Client sends back an ACK to acknowledge the reverse
transmission path (Figure 3.5). Figure 3.6 shows the final position. Two connections have been established
to send information from the Client to the Server and from the server to the Client. Three packets have been
sent to achieve this.

Figure 3.4: Establishing a TCP Connection

-- 14 --
© Oxford Brookes University 2002

Figure 3.5: Establishing a Connection

Figure 3.6: Establishing a TCP Connection

Once the connection is established, TCP can get down to the problem of delivering HTTP requests from
Client to server and sending back the requested document.

-- 15 --
© Oxford Brookes University 2002

3.3 Reliable Packet Transmission
Figure 3.7 shows the header for the TCP packet. The set of TCP Flags are used to indicate special TCP
transmissions like the SYN, SYN/ACK and ACK transmissions needed to establish the connection. Note that
the source and destination addresses do not appear as they can be ascertained from the IP header. The
important field to ensure all transmissions take place is the Sequence Number which says which
transmission this is in a sequence and the Acknowledgment Number which says what is the last packet in the
sequence that has been correctly transmitted and received.

Figure 3.7: TCP Packet

Figure 3.8 shows a TCP transmission from Client to Server requesting a document to be transmitted. In the
diagram, the ACK package waits to be transmitted as soon as the request arrives. Once the request is
understood, the relevant HTML page is downloaded (see Figure 3.9) and split into IP packets ready for
transmission with the appropriate TCP header as part of the data inside the IP packet.

-- 16 --
© Oxford Brookes University 2002

Figure 3.8: HTTP Request

Figure 3.9: HTML Document to Return

-- 17 --
© Oxford Brookes University 2002

Figure 3.10 shows the start of the transmission of the HTML document which fits into 10 TCP segments that
are transmitted in 10 IP packets. The first packet has been sent and further packets will be sent although not
all of them immediately. TCP will attempt to control the rate at which packets are sent to a rate it thinks the
network can stand. So a few packets will be sent. Let us assume that the first packet sent is the first to arrive
in which case the ACK returned indicates that of the sequence of 10 packets, the first has been successfully
received.

Figure 3.10: Starting to Send the Document

Figure 3.11 shows the position slightly further on. Packets 1 and 3 have arrived but 2 is still on its way. The
ACK to package 3 states that the number of packets received in sequence is still just packet 1. There is no
need to worry at this stage. Packet 2 will probably arrive. There is certainly no reason to be hasty and
retransmit packet number 2.

-- 18 --
© Oxford Brookes University 2002

Figure 3.11: Some Packets Acknowledged

Figure 3.12: Discovering Lost Packets

-- 19 --
© Oxford Brookes University 2002

Figure 3.12 shows the situation much further along. Packets 1, 3 5 and 7 have arrived and 2 is about to
arrive. All four ACKs have shown that the sequence defined so far that has arrived successfuly is just the first
packet. However if packet 2 arrives next, all of 1, 2 and 3 will have arrived so that the ACK for packet 2 will
indicate that packets 1 through 3 have been successfully delivered. Packet 4 has been lost completely and
no longer appears. At some stage as the following packets arrive and the situation is still set with only the
first three arrived, the transmitter will realise that packet 4 is lost and will retransmit it.
The numbering of the packets and the acknowledgments indicating the number successfully completed in
sequence is sufficient to ensure that all packets are delivered successfully. When the last packet arrives, the
ACK will indicate that all the 10 transmissions have arrived successfully and the Server is then able to close
the transmission. The closure actually takes one more transmission than the connection. With packets being
delayed and retransmitted, it is possible for the same packet to arrive twice and for packets to arrive after the
Client has indicated that all packets have been received so stopping is not completely straightforward.

-- 20 --
© Oxford Brookes University 2002

4. HTTP/0.9 and HTTP/1.0

l 4.1 Introduction
l 4.2 GET
l 4.3 Headers
l 4.4 Responses
l 4.5 HEAD and POST Requests

4.1 Introduction
Given the underlying TCP/IP network, it can be assumed that requests made by HTTP will arrive at the
correct Server and that if the server locates the page required, it will be returned correctly. If the page is not
located, an error will be received. It is on this basis that we will now look at the HTTP protocol.
The time line for HTTP is as follows:

December 1990
HTTP defined to transmit first Web pages

January 1992: HTTP/0.9
Simple GET protocol for the Web, limits on data transfer

March 1993: HTTP/1.0 Draft
Several iterations

May 1996:HTTP/1.0 RFC 1945
Headers give information about the data transfered. Greater data transfer in both directions

January 1997: HTTP/1.1 Proposal
Supports hierarchical proxy servers, caching, and persistent connections

June 1999: HTTP/1.1 Draft Standard
Initially proposed in 1997, significant use by 1998

2001: HTTP/1.1 Standard
Date to be defined

IETF, the organisatiion that standardises HTTP, tends to issue a prelease version of its standards with a /0.9
label before the fulll standard is given the label /1.0. As can be seen progress has been relatively slow. It
took several years before HTTP/0.9 was finalised and another 4 years before HTTP/1.0 was finalised. The
latest version of HTTP is HTTP/1.1 and this is in wide use yet it is not formally a standard yet. This is
generally the case with IETF. Much user experience is built up before the standard is finalised. By 1998, the
world was nearly all using HTTP/1.0 with only 10% still using HTTP/0.9. Similarly, HTTP/1.1 is the main
version in use today even though the standard is not finalised yet.
HTTP is based on messages that pass from the Client to the Server called request messages and those
from the Server to the Client which are called response messages. All request messages start with a
request line and all response messages start with a response line. Following the initial line in both cases it
is possible to include zero or more header lines that give additional information.
HTTP/0.9 had a single GET request defined and no headers were defined. HTTP/1.0 added HEAD and
POST requests and introduced headers.

4.2 GET Request
HTTP/0.9 had a very simple GET request message:

GET url CRLF

The HTTP request message consists of an ASCII string consisting of the message name followed by a URL
and the Carriage Return and Line Feed characters. This can be simply demonstrated by opening a Telenet
session on Port 80 of a web site as follows:

-- 21 --
© Oxford Brookes University 2002

telnet www.w3.org 80
GET /www/overview.htm CRLF

This will cause the W3C site to send the document www.w3.org/www/overview.html to the command line
interface. Something like the following will be returned:

<HTML>
. . .
</HTML>

Trying that example today may require:

telnet www.w3.org 80
GET /www/overview.htm HTTP/0.9 CRLF

Early on it was not necessary to say which version of HTTP was being used. With several possibilities now
existing, it is best to indicate the type of HTTP request being made.
When the user clicks on a link in an HTML page, asks the browser to load a page, hit the back button or
choose a favourite site, in all these cases the result is a GET messaage requesting the required page being
sent by TCP to the Server having firsty established a connection. IN HTTP/0.9, the document returned was
limited to 1024 characters. In consequence, most HTTP requests consisted of a single message/packet in
each direction once the connection had been established. In HTTP/0.9 and HTTP/1.0, once the server has
sent the document, the connection is dropped. No state is retained in HTTP concerning the transaction. In
HTTP/0.9 there would have been 3 packets used to set up the connection, two packets used to send the
request message (plus the acknowledgment), two to send the response and 4 to drop the connection, a total
of 11 packets for the two information packets to be sent and received. This is of course assuming that no
packets were lost or retransmitted.

4.3 Headers
The general message request format was extended in HTTP/1.0 to include headers:

Request line
Headers (0 or more lines)
Blank line
Optional Message Body

For example, the GET request might be:

GET /Protocols/myimage.png HTTP/1.0
If-Modified-Since: Monday, 13-Sep-99 08:00:00

The GET request line is followed by a header that modifies the request to say only retrieve the file if it has
been modified since September 1999.
The format of the reply will be:

HTTP-version response-code response-text
headers (0 or more lines)
<blank line>
<returned file>

-- 22 --
© Oxford Brookes University 2002

An example might be:

HTTP/1.0 200 Document follows
Date: Mon, 13 Sep 1999 08:00:00 GMT
Server: xxxx
Content-type: image/png
Last-modified: Sun, 12 Sep 1999 16.15.23 GMT
Content-length: 6000

<The png image>

The response has come via HTTP/1.0. The response code is 200 which says that the document was
successfully located and will be following. The headers give additional information about the Server and the
document.
Headers fall into four types:

1. General (Date, Pragma)
2. Request (Authorization, From, If-Modifed-Since, User-Agent)
3. Response (Location, Server, WWW-Authenticate)
4. Entity (Allow, Content-Encoding, Content-Length, Content-Type, Expires, Last-Modified

This is not the complete list available with HTTP/1.0 but gives a flavour of those available. They all have the
general format of a name followed by colon and then the information. Request headers only appear in
request messages and response headers in replies. General and Entity can appear in both. Brief
descriptions are:

Header Type Meaning

Date General Current time/date

Pragma General Request to behave in a certain way (no-cache requests proxies not to
provided cached copies)

Authorization Request Send userid/password

From Request User sends email address as identification

If-Modified-Since Request Conditional GET. Ignore request if not modified since

User-Agent Request Web browser name and version number

Location Response Redirect the request to where it can be found

Server Response Type of server

WWW-
Authenticate

Response Challenge client seeking access to resource that needs authentication

Allow Entity Defines methods allowed to access resource

Content-Length Entity Number of bytes of data in body

Content-Type Entity MIME-type of data

Content-Encoding Entity Decoding needed to generate Content-Type, usually used for compression

Expires Entity When to discard from cache

Last-Modified Entity Time when data last modified

-- 23 --
© Oxford Brookes University 2002

4.4 Responses
The responses all start with the response line which includes the response code. These are divided into the
following classes:

l 1XX: Information
l 2XX: Request successful
l 3XX: Client error
l 4XX: Server error
l 5XX: System failure

No information responses were defined in HTTP/1.0 although the class was set up. The possible responses
are:

The most frequent ones are 200 and 404.

4.5 HEAD and POST Requests
Two new requests were added to HTTP/1.0, HEAD and POST. HEAD is similar in format to GET except that
it does not expect the file to be transmitted. All it requires are the associated header lines. For example:

HEAD /Protocols/Papers.html HTTP/1.0
If-Modified-Since: Monday, 13-Sep-99 08:00:00

This is a request to see if the document has been modified since a specified time on 13 September 1999.
The response would be something like:

HTTP/1.0 304 Not modified

Response Meaning

200 Request succeeded

202 Request accepted, processing incomplete

204 No Content, for example clicking on part of an image map that is inactive

301 Requested URL assigned a new permanent URL

302 Requested URL temporarily assigned a new URL

304 Document not modified. Not changed since the last modification time in a request

400 Bad request

401 Request not accepted, need user authentication

403 Forbidden. Reason might be given in an entity response

404 Not found, the most widely received message

500 Internal server error

501 Not implemented

502 Invalid response from gateway or upstream server.

503 Service temporarily unavailable

-- 24 --
© Oxford Brookes University 2002

The POST command gave the opportunity for a more substantial document to be sent to the Server with the
request. The most frequent use of POST is with form filling in HTML (and will be discussed in detail there). In
this case several lines of input may need to be sent to the Server for processing. The format of the POST
command is:

POST URI HTTP-version
headers (0 or more lines)
<blank line>
body

A specific example might be:

POST /Protocols/Papers.html HTTP/1.0
Content-length: 28

name=Bob+Hopgood&children=3

-- 25 --
© Oxford Brookes University 2002

5. HTTP/1.1

l 5.1 Introduction
l 5.2 Persistent Connection
l 5.3 Caching
l 5.4 Other Enhancements

5.1 Introduction
HTTP/1.1 is a major update to HTTP/1.0. A sub-set of the new Headers in HTTP/1.1 are:

The design of HTTP/1.0 had several limitations once the Web started to be used in a wider context. The
simple model of setting up a connection, downloading a page, and then dropping the connection does not
make a great deal of sense once images start to be included in a document. Several GET requests are
needed to retrieve all the parts of the page. Many of these will be from the same Server resulting in several
connections being set up and destroyed for a single page to be transmitted. TCP keeps some information
concerning bandwidth congestion around the network so that future transmissions can benefit from past
experience. Such information is lost when the connection is broken and has to be discovered again when the
connection is reestablished. Browsers started to set up multiple connections at the same time to try and
improve performance for one user while making things worse for others.

Header Type Meaning

Cache-Control General Caching information

Connection General Connection management

Trailer General Headers at the end of the message, used with chunking

Transfer-Encoding General Transformation applied to message body, allows separate chunks to be
sent

Upgrade General Suggesting another newer protocol server can handle

Via General Information about intermediate servers passed on

Warning General Non-catastrophic error

Proxy-Authorization Request Authentication with proxy

Accept Response Preferred media type

If-Match, If-None-
Match

Request Checking Entity Tags

If-Unmodified-Since Request Check when last modified

Expect Request Expected server behaviour, can it handle a large file

Host Request Resource Host, mandatory in HTTP/1.1

Max-Forwards Request Limits number of hops

Range Request Requests part of file

Location Response Alternative place to find file

Retry-After Response Time before retrying

Accept-Ranges Response Server can accept range requests

Proxy-Authenticate Response Authentication but for the proxy

ETag Response Defines ETag

Vary Response Variant of Resource

Content-Language Entity Language of resource

Content-Location Entity Alternative location

Content-Range Entity Range in resource

-- 26 --
© Oxford Brookes University 2002

A second major problem occurs once caches became common place. There is little information available as
to when an old stale page can be tolerated and when an up-to-date page must be provided. It should be
possible to receive a Web page from a cache rather than the original server and be confident that it is the
most recent.
There was also the need for many minor enhancements within HTTP/1.1 and we will discuss one or two of
these once we have looked at persistent connections and caching. Five new requests, over 30 new headers,
and another 20 response codes have been added to HTTP/1.1 just to give a feel for the level of change.

5.2 Persistent Connection
A fundamental difference between HTTP/1.0 and HTTP/1.1 is that the connection is not dropped when the
request has been replied to. In HTTP/1.1, the connection remains open until the Server makes a decision
that it is no longer required. This is a heuristic decision based on the availability of resources and the use that
has been made of the connection. HTTP/1.1 also allows several GET requests to be sent over the
connection before the first response has been returned. At the server end, this allows the server to return
some documents before others depending on whether it needs to access them from disc or whether they are
available in its own cache.
As well as improving users perceived performance, because the connections are not dropped and TCP can
make more efficient use of the network, it reduces the load on both the network and the servers. An
estimated improvement is that downloading a similar file with HTTP/1.1 requires about 60% of the resources
in the Server compared with HTTP/1.0. In hardware terms for a large site, that might mean that 20% less
servers are needed.
W3C has a benchmark that originated by merging the Netscape and Microsoft home pages as they were a
few years ago complete with a set of images and using this Microscape benchmark to check out
performance. There were 43 images in the combined Microscape page. Four secenarios were compared:

l HTTP/1.0: using 4 simultaneous connections
l HTTP/1.1: using 1 persistent connection
l HTTP/1.1 pipeline: using 1 persistent connection
l HTTP/1.1 pipeline + compression: using 1 connection

The first uses HTTP/1.0 and opens 4 TCP connections to bring down the images with the page itself. The
second uses HTTP/1.1 but with a single connection that is persistent. The third pipelines the requests rather
than wait for each to complete. the last test also added compression which is available in HTTP/1.1. This will
not improve the images very much as they are already compressed but has some effect on the page itself.
the results are shown in Figure 5.1.
As can be seen, the four HTTP/1.0 connections are faster than the single HTTP/1.1 connection but at the
cost of many more TCP packets being sent due to the dropping of the connections after each transfer. Once
the HTTP/1.1 connection is pipelined, the number of packets needed goes down and the performance is
significantly better. With the test with many images, only marginal improvement comes from the
compression.

-- 27 --
© Oxford Brookes University 2002

Figure 5.1: Microscape Benchmark

5.3 Caching
The Expires header in HTTP/1.0 does help in recognising when a cached page is no longer valid and has
gone stale. Much more control is provided in HTTP/1.1 with the Cache-Control header. This allows either
the Server to:

l Declare what is cacheable
l Say what may be stored by caches
l Provide a more powerful expiration mechanism
l Provide support for revalidation and reload

A simple use might be:

Cache-Control: no-cache

This would tell all the caches that this page should not be cached presumably because it contains
information that quickly ggoes out-of-date. The full set of possibilities in GET requests are:

-- 28 --
© Oxford Brookes University 2002

Support is also provided for the server to give further information when it returns that page using the Cache-
Control header:

5.4 Other Enhancements
There are many other enhancements in HTTP/1.1 but only two will be discussed in this Primer.
HTTP/1.0 allowed the freshness of a page to be validated with the If-Modified-Since request. This ensures
that the page returned is fresher than a previous date but does not guarantee that it is the freshest nor does
it give the user much idea whether the page it already has is up-to-date. Thus the user has little confidence
that the page being viewed is the freshest. Also, to first order the time stamps are only to the nearest second
so that if the information is rapidly changing, the mechanism does not work either.
HTTP/1.1 has introduced the Entity Tag or ETag for this purpose. An ETag uniquely identifies a copy of a
page by giving it a unique identifier. Strong ETags change whenever the page changes. Weak ETags should
change whenever the page changes. If the current version on the Server has the same ETag as the one in a
cache then the two should be the same version of the page. A new request header has been added, If-Match
that allows the user or a proxy to validate the copy of the page it already has for freshness.
A second problem that arises on the Web is when standard information pages are returned in a well-defined
format but where the information changes regularly. For example, the latest prices on the Stock exchange
are changing by the minute and if all are listed, even if it is just the FTSE100, the page is still quite long and
most users will only wish to see a subset of the whole page. The Range request has been added to allow the
user to only download part of a page between well defined ranges. For example:

GET /largefile.html HTTP/1.1
Range: 0-200, 5000-5030

Directive Description

no-cache Must come from original server

only-if-cached Only from cache

no-store Do not cache response

max-age Age no greater than this. max-age=0 same as no-cache

max-stale Can be expired but not more than this. max-stale=120 accepts stale response as long
as not by more than 2 minutes

min-fresh Fresh for at least this long. min-fresh=120 means that response has to have an
expired time at least 2 minutes in the future

no-transform Proxy must not change media type. Not allowed to turn a png into a gif

Directive Description

public Insists page is cacheable. Cache might have thought it was in a non-cacheable class

private Stops a response being cacheable (such as Customer ID or a password)

no-store Stops caching of both request and response

no-cache Insists page is not cacheable. Proxy may cache as long as it validates each time

no-transform Must not transform MIME type

must-revalidate Strictly follow the rules. Must revalidate. If it cannot, must return a 504 or 500 error

proxy-revalidate Proxy must follow the rules. Local browser caches don't have to

max-age Maximum time it is fresh, overrides Expires Header

s-maxage Maximum time it should be cached in a proxy cache

-- 29 --
© Oxford Brookes University 2002

This would return just the bytes specified. Some formats such as Adobe's PDF keep a n index at the front
giving the range of each page in the document in terms of bytes from the start of the file. The user can use
the first range request to pick up the index and then a subsequent range request to pick up the page or
pages of interest. Servers are not required to handle range requests. The Accept-Ranges header has been
added to allow the server to indicate that it is capable of handling range requests.
HTTP has also introduced the Expect/Continue request/response to help with the handling of large volumes
of information. A user attempting to send a large POST file can send the length and ask the Server if it can
continue. The Server can respond saying whether or not it can handle such a large file.

-- i --
© Oxford Brookes University 2002

Appendix A

References
There are some useful Web sites and books relevant to HTTP:

1. http://www.w3.org/Protocols/rfc1945/rfc1945
HTTP/1.0 May 1996

2. http://www.ietf.org/rfc/rfc2616.txt
HTTP/1.1 Draft Standard, June 1999

3. Web Protocols and Practice, Balachander Krishnamurthy and Jennifer Rexford
Addison Wesley, 2001.

4. The World Wide Web, Mark Handley and Jon Crowcroft
UCL Press, 1996.

5. Computer Networks (Third Edition), Andrew S Tanenbaum
Prentice-Hall, 1996.

6. High-Performance Communication Networks (2nd edition), Jean Walrand & Pravin Varaiya
Morgan Kaufmann Publishers, 2000.

-- ii --
© Oxford Brookes University 2002

Appendix B: HyperText Transfer Protocol Design Issues, 1991 by Tim
Berners-Lee

Here are some design decisions to be made for protocols for information retrieval for hypertext.

Underlying protocol

There are various distinct possible bases for the protocol - we can choose

l Something based on, and looking like, an Internet protocol. This has the advantage of being well
understood, of existing implementations being all over the place. It also leaves open the possibility of
a universal FTP/HTTP or NNTP/HTTP server. This is the case for the current HTTP.

l Something based on an RPC standard. This has the advantage of making it easy to generate the
code, that the parsing of the messages is done automatically, and that the transfer of binary data is
efficient. It has the disadvantage that one needs the RPC code to be available on all platforms. One
would have to chose one (or more) styles of RPC. Another disadvantage may be that existing RPC
systems are not efficient at transferring large quantities of text over a stream protocol unless (like DD-
OC-RPC) one has a let-out and can access the socket directly.

l Something based on the OSI stack, as is Z39.50. This would have to be run over TCP in the internet
world.

Current HTTP uses the first alternative, to make it simple to program, so that it will catch on: conversion to
run over an OSI stack will be simple as the structure of the messages is well defined.

Idempotent ?

Another choice is whether to make the protocol idempotent or not. That is, does the server need to keep any
state information about the client? (For example, the NFS protocol is idempotent, but the FTP and NNTP
protocols are not.) In the case of FTP the state information consists of authorisation, which is not trivial to
establish every time but could be, and current directory and transfer mode which are basically trivial. The
proposed protocol IS idempotent.
This causes, in principle, a problem when trying to map a non-idempotent system (such as library search
systems which stored "result sets" on behalf of the client) into the web. The problem is that to use them in an
idempotent way requires the re-evaluation of the intermediate result sets at each query. This can be solved
by the gateway intelligently caching result sets for a reasonable time.

Request: Information transferred from client

Parameters below, however represented on the network, are given in upper case, with parameter names in
lower case. This set assumes a model of format negotiation in which in which the client says what he can
take, and the server decides what to give him. One imagines that each function would return a status, as well
as information specified below.
When running over a byte stream protocol, SGML would be an encoding possibility (as well as ASN/1 etc).
Here are some possible commands and parameters:

-- iii --
© Oxford Brookes University 2002

GET document name
Please transfer a named document back. Transfer the results back in a standard format or one which I
have said I can accept. The reply includes the format. In practice, one may want to transfer the document
over the same link (a la NNTP) or a different one (a la FTP). There are advantages in each technique. The
use of the same link is standard, with moving to a different link by negotiation (see PORT).

SEARCH keywords
Please search the given index document for all items with the given word combination, and transfer the
results back as marked up hypertext. This could elaborate to an SQL query. There are many advantages
in making the search criterion just a subset of the document name space.

SINCE datetime
For a search, refer to documents only dated on or after this date. Used typically for building a journal, or
for incremental update of indexes and maps of the web.

BEFORE datetime
For a search, refer to documents before this data only.

ACCEPT format penalty
I can accept the given formats . The penalty is a set of numbers giving an estimate of the data degradation
and elapsed time penalty which would be suffered at the CLIENT end by data being received in this way.
Gateways may add or modify these fields.

PORT
See the RFC959 PORT command. We could change the default so that if the port command is NOT
specified, then data must be sent back down the same link. In an idempotent world, this information would
be included in the GET command.

HEAD doc
Like GET, but get only header information. One would have to decide whether the header should be in
SGML or in protocol format (e.g. RPC parameters or internet mail header format). The function of this
would be to allow overviews and simple indexes to be built without having to retrieve the whole document.
See the RFC977 HEAD command. The process of generation of the header of a document from the
source (if that is how it is derived) is subject to the same possibilities (caching, etc) as a format conversion
from the source.

USER id
The user name for logging purposes, preferably a mail address. Not for authentication unless no other
authentication is given.

AUTHORITY authentication
A string to be passed across transparently. The protocol is open to the authentication system used.

HOST
The calling host name - useful when the calling host is not properly registered with a name server.

Client Software
For interest only, the application name and version number of the client software. These values should be
preserved by gateways.

-- iv --
© Oxford Brookes University 2002

Response

Suppose the response is an SGML document, with the document type a function of the status.
Possible replies one could imagine, encoded as SGML:

<!GDOC HTML> a
normal HTML document <!/GDOC> <!GDOC HTML>

Document with preprocessing instructions:

<HEADER> normal HTML <FORMAT REP="Text/ASCII">
<FILTER PROCESS="crypt-md5" PROMPT="Delphi"> <FILTER PROCESS="uncompress">
<FILTER PROCESS="tar"> </HEADER>
asdfghjklsdfghjklasdfghjksdfhjkzxcvbnmeryuioxcvbj
ewft76t8yytcvncncnryxmry02zmxnxjxb7wdtx7b7rtwbt87

Status
A status is required in machine-readable format. See the 3-figure status codes of FTP for example. Bad
status codes should be accompanied by an explanatory document, possible containing links to further
information. A possibility would be to make an error response a special SGML document type. Some
special status codes are mentioned below.

Format
The format selected by the server

Document
The document in that format

Status codes

Success
Accompanied by format and document.

Forward
Accompanied by new address. The server indicates a new address to be used by the client for finding the
document. the document may have moved, or the server may be a name server.

Need Authorisation
The authorisation is not sufficient. Accompanied by the address prefix for which authorisation is required.
The browser should obtain authorisation, and use it every time a request is made for a document name
matching that prefix.

Refused
Access has been refused. Sending (more) authorization won't help.

Bad document name
The document name did not refer to a valid document.

Server failure
Not the client's fault. Accompanied by a natural language explanation.

Not available now
Temporary problem - trying at a later time might help. This does not i,ply anything about the document
name and authorisation being valid. Accompanied by a natural language explanation.

Search fail
Accompanied by a HTML hit-list without any hits, but possibly containing a natural explanation.

Valid
XHTML

