
SVG Primer

© Oxford Brookes University 2001

Contents

l 1. Introduction
¡ 1.1 Scalable Vector Graphics
¡ 1.2 An XML Application
¡ 1.3 Using SVG

l 2. Coordinates and Rendering
¡ 2.1 Rectangles and Text
¡ 2.2 Coordinates
¡ 2.3 Rendering Model
¡ 2.4 Rendering Attributes and Styling Properties
¡ 2.5 Following Examples

l 3. SVG Drawing Elements
¡ 3.1 Path and Text
¡ 3.2 Path
¡ 3.3 Text
¡ 3.4 Basic Shapes

l 4. Grouping
¡ 4.1 Introduction
¡ 4.2 Coordinate Transformations
¡ 4.3 Clipping

l 5. Filling
¡ 5.1 Fill Properties
¡ 5.2 Colour
¡ 5.3 Fill Rule
¡ 5.4 Opacity
¡ 5.5 Colour Gradients

l 6. Stroking
¡ 6.1 Stroke Properties
¡ 6.2 Width and Style
¡ 6.3 Line Termination and Joining

l 7. Text
¡ 7.1 Rendering Text
¡ 7.2 Font Properties
¡ 7.3 Text Properties

l 8. Animation
¡ 8.1 Simple Animation
¡ 8.2 Animation Control
¡ 8.3 Animation along a Path

l 9. Linking and Templates
¡ 9.1 Linking
¡ 9.2 Symbols and their Use
¡ 9.3 Images
¡ 9.4 Maskings

-- ii --
© Oxford Brookes University 2001

l 10. Interaction
¡ 10.1 Interaction and the DOM
¡ 10.2 Interaction Methods

Appendices

l A. SVG Colours
l B. SVG Elements and their Attributes

¡ B.1 Attribute Value Types
¡ B.2 SVG Elements Described in this Document
¡ B.3 SVG Global Attributes
¡ B.4 SVG Style Properties and Attributes
¡ B.5 Filtering Elements
¡ B.6 Font Elements
¡ B.7 Other Elements

l C. References

-- 1 --
© Oxford Brookes University 2001

1. Introduction

l 1.1 Scalable Vector Graphics
l 1.2 An XML Application
l 1.3 Using SVG

1.1 Scalable Vector Graphics
Until recently, the way to add schematic drawings to a web page was to define the drawing as
an image (in GIF, PNG, JPEG or some other format) and insert the image into the web page
using the element. This has the following major drawbacks:

1. Image size: The size of an image is defined by the width and height of the image (in
pixels) and the number of bits allocated to each pixel in the image. For example, a 100
by 100 pixel image with 8 bits defining the Red, Green and Blue components of each
pixel results in an image that takes up over 30 Kbytes before compression. For simple
line drawings this is a large amount of information that needs to be moved across the
internet for possibly very little content. Also, it is not possible to interact with the image
without generating and sending the new image.

2. Fixed resolution: Once the image has been defined at a specific resolution, that is the
only resolution available. Zooming in on the image just makes the pixels bigger. To get
higher resolution, the original schematic drawing has to be reconverted to an image
with, say, 500 pixels in each direction.

3. Binary format: Image formats store the image data in some binary format which makes
it difficult to embed rich metadata about the graphic to help search engines. Also,
specialized applications are needed to make even the slightest changes to the image.

4. Minimal animation: The GIF format allows several images to be defined in one image
file ("animated gifs"), but each image is essentially static. More lively presentations
require a video format such as MPEG and this is large, requires a separate plugin and
is even more difficult to edit.

5. No inherent hyperlinking: Web pages depend on hyperlinking. To do this is with
images requires the use of image maps defined as part of the enclosing HTML page.
They are difficult to generate and only allow linkage from a region of the image and not
from a specific element in the image.

Scalable Vector Graphics, or SVG, is the World Wide Web Consortium's Recommendation for
defining 2-dimensional schematic drawings such that the size is more directly dependent on
the content in the drawing and the resolution is whatever the user requires. Zooming in on an
SVG drawing allows greater and greater detail to be seen if the drawing is complex.

1.2 An XML Application
SVG is an XML application. That means SVG is defined using a set of elements, rather like
HTML, and the elements can have attributes associated with them. For example:

<text x="20" y="20">Abracadabra</text>

The SVG text element has a start and end tag written as <text> and </text> and the content
of the element is the string Abracadabra. The text element has two attributes, x and y, that
define the position of the text in the drawing. These are defined as part of the start tag. Being
an XML application, several rules have to be obeyed:

l There can only be one outer element that encloses the complete drawing definition and
that is <svg>

l Every start tag must have a correctly nested end tag
l In SVG, tag names are predominantly lower case with no spaces (multi-word names

like clipPath use camel case
l Attributes must be enclosed in quotes (either single or double)

-- 2 --
© Oxford Brookes University 2001

If the content of the element is null, a shorthand can be used:

<rect x="10" y="10" width="50" height="30"></rect>
<rect x="10" y="10" width="50" height="30" />

The slash before the closing > in the second line indicates that the element does not have any
content. Effectively, all the content is encapsulated in the name of the element and its
attributes. The two examples of the rect element given above are equivalent.

1.3 Using SVG
The simplest way to use SVG is as part of a web page defined in HTML. You define the SVG
document and store it in a file with '.svg' as the file extension. To add it to the web page
requires, for example:

<p>This can be shown in the following diagram:</p>
<object width="620" height="420" data="myfirstsvg.svg" alt="SVG Drawing"
type="image/svg+xml">
Please download Adobe Plug-in to see SVG diagram </object>

The object element in HTML 4.0 is similar to the img element in that it allows you to insert an
external object (myfirstsvg.svg in this case) into a web page. It differs in that it allows you to
insert applets and other HTML pages as well as graphics and images. You can also specify a
number of alternatives. Here we have given a text message to indicate that the SVG could not
be rendered but we could have had an element that defines a png image of the
diagram as an alternative. Providing some alternative is useful at the moment as not
everybody has an SVG plug-in installed in their browser. The recommended SVG plug-in at
the moment is the one from Adobe which can be installed in most of the modern browsers. It is
free. You should add it to your favourite browser before you start using SVG. Visit the Adobe
site and follow the instructions:

http://www.adobe.com/svg/main.html

There are a number of stand-alone viewers for SVG that can be used. You just open the SVG
file and it will be displayed in the viewer's window. There are also support tools for constructing
constructing SVG diagrams just as there are tools for constructing web pages. Some of these
also have the ability to view a previously defined SVG file. A complete list of the tools and
viewers available is maintained on the W3C web site:

http://www.w3.org/Graphics/SVG/Overview.html

-- 3 --
© Oxford Brookes University 2001

2. Coordinates and Rendering

l 2.1 Rectangles and Text
l 2.2 Coordinates
l 2.3 Rendering Model
l 2.4 Rendering Attributes and Styling Properties
l 2.5 Following Examples

2.1 Rectangles and Text
It is difficult to talk about either coordinates or rendering in a vacuum so we first need to
specify a couple of SVG drawing elements so that we can illustrate the points being made.
The two we will use for the moment are text and rect. We will come back and talk about the
drawing primitives in more detail later.

The rect element has a large number of attributes but we shall consider just a few for the
moment:

<rect x="20" y="30" width="300" height="200" rx="10" ry="10"
style="fill:yellow;stroke:black" />
<text x="40" y="130" style="fill:black;stroke:none">Abracadabra</text>

Figure 2.1: SVG Coordinates

The first two attributes, x and y, of the rect element define the origin of the rectangle. The
second two define its width and height. The rx and ry attributes define the radius to be used in
rounding the corners. Finally, the style attribute defines its rendering. For the text element, the
first two attributes, x and y, define the origin of the text string while the third attribute defines
the rendering.

-- 4 --
© Oxford Brookes University 2001

The first thing to notice is that the Y-axis in SVG points downwards. This can be a source of
error when defining SVG diagrams so take extra care to remember this fact! The X-axis does
go from left to right. The origin of the text by default is at the left-hand end of the text on the
baseline. By convention the height of the text when used in an HTML page is the same as the
medium size text in the HTML page. The font used is at the choice of the browser and plug-in.

2.2 Coordinates
The coordinate system used by the SVG diagram as a whole, when displayed as part of a web
page, is a negotiation between the SVG plug-in, what the user would like and the real estate
available from the browser.

A complete SVG document containing the drawing defined above could be:

<svg viewBox="0 0 500 300">
<rect x="20" y="30" width="300" height="200" rx="10" ry="10"
style="fill:yellow;stroke:black" />
<text x="40" y="130" style="fill:black;stroke:none">Abracadabra</text>
</svg>

This could be embedded in an HTML page by the object element:

<object width="500" height="300" data="figure.svg" alt="SVG Drawing"
type="image/svg-xml">

</object>

This situation is reasonably straightforward. The svg element has a viewBox attribute that
requests that the area from (0,0) to (500,300) in user coordinates is visible in the browser
window. The object element requests an area 500 wide and 300 high to put the diagram in.
As no units are specified, the assumption is that the units requested are the browser's view of
what a pixel width is. Assuming this area is available, the diagram will appear 500 pixels wide
and 300 pixels high. A unit in the diagram will be equivalent to a pixel as specified by the
browser.

In this Primer, we shall assume that the size of the SVG diagram is defined by the viewBox
attribute and that the object element achieves a mapping of this into an equivalent area on the
web page. There are other ways of defining the size of the SVG diagram and it can be
specified in units other than pixels. The negotiation can be quite complex if the area required
is unavailable or the units are real world ones (centimetres, say) and if the aspect ratio of the
requested area is different from the area used by the SVG document. This is outside the
scope of a short introduction.

2.3 Rendering Model
Most of the drawing elements in SVG define an area to be rendered. Both rect and text
elements define areas. In the case of rect it is the area inside the defined rectangle while for
text it is the area inside the glyphs making up the individual characters.

The rendering model used by SVG is the one called the painter's model which is similar to
the way an artist would paint an oil painting. In a simple SVG diagram, the painter starts at the
first element to be rendered and paints an area defined by the element. The artist then paints
the second element and so on. If the second element is painted in the area occupied by the
first element than it will obscure the first element unless the paint being applied is semi-
transparent. Both the interior and the edge have to be painted. In SVG, the interior is painted
followed by the edge. Consequently, the edge is visible and not partly obscured by the interior.
In our example diagram, if the rect element had been after the text element, nothing would
have been seen of the text element as the rect element would have been painted completely
over it.

-- 5 --
© Oxford Brookes University 2001

2.4 Rendering Attributes and Styling Properties
Recall that HTML is a markup language for marking up the content of a textual document. The
styling of that document is achieved by defining the style to be applied to each of the markup
elements. For example, the <p> element produces justified text, the <h1> element is bold and
in red etc. Similarly, SVG defines the content of a diagram which may be styled in different
ways. However, in graphics it is less clear what is style and what is content. For example, a
pie chart might use colours to differentiate between individual segments. As long as it provides
that differentiation, the specific colour chosen is normally not very relevant. On the other hand,
if the diagram depicts a traffic light, interchanging the area to be drawn in green with the one in
red would not be a good idea. This applies to most of the rendering attributes in SVG.
Consequently the decision was made to allow all the rendering attributes to either be regarded
as styling or as an integral part of the content of the diagram.

The use of styling is an extension of the use of styling in HTML. Styling can be achieved by
adding a style element to the SVG file:

<svg viewbox= "0 0 500 300" >
<style type="text/css">
<![CDATA[
rect {stroke:black;fill:yellow}
rect.different {stroke:red; fill:none}
]]>
</style>
<rect x="20" y="30" width="300" height="200" rx="10" ry="10" />
<rect class="different" x="20" y="330" width="300" height="200" rx="10" ry="10" />
</svg>

In this example, the first rectangle will be drawn in yellow with a black boundary whereas the
second will be drawn with a red boundary and no internal fill as it belongs to the class different
which has a more precise styling than rectangles in general. The stylesheet is enclosed within
a CDATA construct to ensure that XML does not do any processing on the style rules. The
same effect could be achieved by defining an external sheet in the file mystyle.css as:

rect {stroke:black;fill:yellow}
rect.different {stroke:red; fill:none}

and attaching it to the SVG document by:

<?xml-stylesheet type="text/css" href="mystyle.css" ?>
<svg viewbox= "0 0 500 300" >
<rect x="20" y="30" width="300" height="200" rx="10" ry="10" />
<rect class="different" x="20" y="330" width="300" height="200" rx="10" ry="10" />
</svg>

Finally, each element may use the style attribute directly:

<rect style="stroke:black;fill:yellow" x="20" y="30" width="300" height="200" rx="10"
ry="10" />
<rect style="stroke:red; fill:none" x="20" y="330" width="300" height="200" rx="10"
ry="10" />
</svg>

-- 6 --
© Oxford Brookes University 2001

The rules of precedence between linking to an external style sheet, embedding and importing
style sheets, attaching styling to an element and user defined style sheets are the same as for
CSS when used with HTML.

The alternative method of controlling the rendering of an element is to use the rendering
attributes directly:

<rect x="20" y="30" width="300" height="200" rx="10" ry="10" fill="yellow"
stroke="black" />
<rect stroke="red" fill="none" x="20" y="330" width="300" height="200" rx="10"
ry="10" />

Each property that can be defined as part of the style attribute associated with the element
can also be defined as a separate attribute. The local effect is the same in both cases. Rather
than switch between the two approaches, in this Primer we will define all the local and global
rendering via styling. Readers should be aware that they have the choice. A good basis for
making a global choice is to use styling when the rendering is not content and use the
individual attributes when the rendering is part of the content. Mixing the two does not give the
effect that a graphics programmer might anticipate. If you use a rendering attribute, it has
lower precedence than any styling introduced by a style sheet. In consequence, if you use
rendering attributes do not use style sheets at all.

2.5 Following Examples
To avoid a great deal of duplication, all the following examples are assumed to have an outer
svg element and associated stylesheet as follows:

<svg viewbox= "0 0 600 400" >
<title>Title of Drawing</title>
<desc>This is a long description about what this drawing is about<desc>
<style type="text/css">
<![CDATA[
rect {stroke:black;fill:white;}
line {stroke:firebrick;stroke-width:2}
path {fill:firebrick;stroke:none}
text {font-family:Verdana;font-size:14;fill:darkblue;font-weight:bold}
]]>
</style>
<rect x="1" y="1" fill="#bbffbb" width="598" height="398"/>
<!-- ************** Coloured Screen Area 600 by 400 ******************** -->
<!-- ************** Examples added here ******************** -->
</svg>

The title element is normally added straight after the svg element and it may be made
available to the user by the browser. Similarly, the desc element can be used to provide
comments throughout a document. Normally it is the first element after a g element.

-- 7 --
© Oxford Brookes University 2001

This produces the background for a set of diagrams defined on the (0,0) to (600,400) space as
follows:

Figure 2.2: Slide background, 600 by 400

The rectangle is set one pixel in from the edge to make sure all the border is visible.

-- 8 --
© Oxford Brookes University 2001

3: SVG Drawing Elements

l 3.1 Path and Text
l 3.2 Path
l 3.3 Text
l 3.4 Basic Shapes

3.1 Path and Text
The two main drawing elements in SVG are path and text. There is a set of basic shape
drawing elements like rect that are essentially shorthand forms for the path element. We will
discuss these later. SVG is designed as a transmission format for schematic diagrams in the
widest sense. Thus it should be applicable to simple graphs and flow diagrams but also be
efficient for CAD diagrams, maps, etc. This means that the main drawing elements must be
efficient in quite a wide set of areas. Attention needs to be paid to efficient transmission of
complex paths and demanding text.

3.2 Path
The path element defines a shape that can be open or closed. A path consists of a sequence
of path segments and in many cases this is a single path segment in which case path and
path segment are synonymous. Each path segment consists of a sequence of commands
where the first defines a new current position and the remainder define a line or curve from the
current position to some new position which becomes the current position for the next part of
the curve and so on. The form of the path element is as follows:

<path d="M 0 0 L 100 100">

The d attribute defines the path. In the example above it defines a path that consists of
establishing a current position at the origin (Move to 0,0) and the path goes from there to the
point (100,100) as a straight L ine. This would be the new current position if there were
subsequent commands in the sequence. The following path is a triangle:

<path d="M 0 0 L 100 0 L50 100 Z">

Here the first line is horizontal from the origin to the point (100,0) and then a straight line goes
to the point (50,100). The command Z closes the path with a straight line from (50,100) back to
(0,0), the starting position for the path segment.
A path with two path segments would have the form:

<path d="M 0 0 L 100 0 L50 100 Z M300,300 L400,300 L350,400 Z">

-- 9 --
© Oxford Brookes University 2001

White space has been used to separate the coordinates in the first path segment. Commas
can also be used as is shown in the second path segment. For transmission efficiency, surplus
separation can be removed. Some of the condensing rules are:

l The coordinate follows the command letter with no intervening space
l Negative coordinates have no separation from the previous coordinate
l Numbers starting with a decimal point need no white space if it is unambiguous
l If the next command is the same as the previous one, the command letter can be

omitted

For example:

<path d="M0,0L.5.5.8.2Z">

This is equivalent to:

<path d="M 0, 0 L 0.5, 0.5 L 0.8, 0.2 Z">

The basic commands are:

If the path being specified consists of many short paths, it may well be more efficient to define
the path as relative positions from the previous current position. If the command uses a lower
case letter, this indicates that the coordinates defined for this command are relative to the
previous current position. Figure 3.2 shows some more complex examples.

Command Meaning Parameters

M Establish origin at point specified Two parameters giving absolute
(x,y) current position

L
Straight line path from current position to
point specified

Two parameters giving absolute
(x,y) position of the line end point
which becomes the current
position.

H
Horizontal line path from current position to
point specified

Single parameter giving absolute
X-coordinate of the line end point.
The Y-coordinate is the same as
that of the previous current
position. The new point becomes
the current position.

V Vertical line path from current position to
point specified

Single parameter giving absolute
Y-coordinate of the line end point.
The X-coordinate is the same as
that of the previous current
position. The new point becomes
the current position.

Z Straight line back to original Move origin No parameters.

-- 10 --
© Oxford Brookes University 2001

Figure 3.2: Path line commands

The path depicted at the top of the diagram could have been written:

<path d="M 150, 50 L 200, 100 L 250, 100 L 250, 50 L 300, 50 L 300, 10 L350, 60">

Paths can also be defined as curves (quadratic and cubic bezier, and elliptical arcs). Probably
the most useful is the cubic bezier. This has the initial letter C and has three coordinates as its
parameters. A curved path is defined from the current position (either established by a Move
command or a previous line or curve command) to the third point defined in the cubic bezier.
The first two points define the bezier control points that give the shape of the curve (Figure
3.2). The positioning of the control points change the shape of the curve under the user's
control as can be seen in Figure 3.3. The coordinates used position the curves as they appear
on the diagram.

-- 11 --
© Oxford Brookes University 2001

Figure 3.2: Path cubic bezier command

Figure 3.3: Path cubic bezier examples

-- 12 --
© Oxford Brookes University 2001

A real world example is the creation of a duck as shown in Figure 3.4. In the top left the duck
has been defined by a set of points and the path is a sequence of straight lines between those
points (the points are marked by circles):

<path d="M 0 112
L 20 124 L 40 129 L 60 126 L 80 120 L 100 111 L 120 104 L 140 101 L 164 106 L 170
103 L 173 80 L 178 60 L 185 39
L 200 30 L 220 30 L 240 40 L 260 61 L 280 69 L 290 68 L 288 77 L 272 85 L 250 85 L
230 85 L 215 88 L 211 95
L 215 110 L 228 120 L 241 130 L 251 149 L 252 164 L 242 181 L 221 189 L 200 191 L
180 193 L 160 192 L 140 190 L 120 190
L 100 188 L 80 182 L 61 179 L 42 171 L 30 159 L 13 140 Z"/>

Figure 3.4: Path defined by lines and cubic beziers

The duck without point markers is shown in the top right. In the bottom left the duck has been
defined by a set of cubic bezier curves (the control points are marked by aqua circles and the
end points by yellow circles) and the duck without the point markers is shown bottom right.
The duck defined by bezier curves is:

<path d="M 0 312
C 40 360 120 280 160 306 C 160 306 165 310 170 303
C 180 200 220 220 260 261 C 260 261 280 273 290 268
C 288 280 272 285 250 285 C 195 283 210 310 230 320
C 260 340 265 385 200 391 C 150 395 30 395 0 312 Z"/>

-- 13 --
© Oxford Brookes University 2001

The number of points in the path defined by lines is 43 while the bezier definition uses 25. The
path could also be defined using relative coordinates in which case it would be:

<path d="M 0 312
c 40 48 120 -32 160 -6
c 0 0 5 4 10 -3 c 10 -103 50 -83 90 -42
c 0 0 20 12 30 7 c -2 12 -18 17 -40 17
c -55 -2 -40 25 -20 35 c 30 20 35 65 -30 71
c -50 4 -170 4 -200 -79 z"/>

Note that it does not really make any difference whether you complete the closed curve with
upper or lowercase Z as the effect is identical. Removing unnecessary spaces reduces the
path definition to 160 characters compared with the 443 characters in the initial line path
representation:

<path d="M 0 312c40 48 120-32 160-6c0 0 5 4 10-3c10-103 50-83 90-42c0 0 20 12 30
7c-2 12-18 17-40 17c-55-2-40 25-20 35c30 20 35 65-30 71c-50 4-170 4-200-79 z"/>

3.3 Text
The second most important drawing element is text. It has a large number of styling properties
that we will discuss later. Here, we will just define the three main elements. Figure 3.5 shows
the three main types of text that can be generated:

l Text defined just using the text element
l Text that uses the tspan element to vary the properties and attributes being used in the

text presentation
l Text where the path is defined by the textPath element

Figure 3.5: Different text elements

-- 14 --
© Oxford Brookes University 2001

<text x="20" y="50">Abracadabra</text>

<text x="220" y="20">
<tspan x="220" dy="30">This is multi-line</tspan>
<tspan x="220" dy="30">text or text</tspan>
<tspan x="220" dy="30" style="fill:white;stroke:green">with different properties</tspan>
<tspan x="220" dy="30" rotate="30">that can be produced</tspan>
<tspan x="220" dy="30">using the tspan element</tspan>
</text>

<path id="duck" d="M 0 312 C 40 360 120 280 160 306 C 160 306 165 310 170 303
C 180 200 220 220 260 261 C 260 261 280 273 290 268 C 288 280 272 285 250 285
C 195 283 210 310 230 320 C 260 340 265 385 200 391 C 150 395 30 395 0 312 Z"/>

<text style="font-size:10">
<textPath xlink:href="#duck">
We go up, then we go down, then up again around his head. Now we are upside down
as we go round his neck and along the bottom to the tail.
</textPath>
</text>

The use of the text element by itself has attributes x and y that define the origin for the text.
The origin is by default at the bottom left of the first character and the characters are displayed
from left to right. Attributes associated with the text can change the start position, the
characteristics of the text and the drawing direction. We will discuss these later.

If the position of parts of the text or the text's attributes need to change from that which is
available using the text element, these can be adjusted by including within the text element a
tspan element. The text within a tspan may have its origin specified either by absolute x and y
attributes or relative dx and dy attributes. The current text position is incremented by the
amount specified in the case of the relative attribute. For both dx and dy, the attribute can be
a list in which case the first number defines the increment for the first character, the second
defines the increment from that character for the second character and so on. The characters
in the text string within the tspan element can each be rotated by a defined number of degrees
degrees by using the rotate attribute. Again, a list of numbers can be provided to define the
orientation of each character in the text sequence. Some further examples of tspan usage are
shown in Figure 3.6.

-- 15 --
© Oxford Brookes University 2001

Figure 3.6: Uses for the tspan element

<text x="10" y="50" >THE<tspan style="font-size:40">REAL</tspan>DUCK</text>

<text x="10" y="100" >The duck <tspan style="font-weight:bold; fill:firebrick">is
not</tspan> correct</text>

<text x="300" y="100" >But it can <tspan dx="30" dy="-30" style="font-weight:bold;
fill:firebrick">easily </tspan><tspan dy="30">be fixed</tspan></text>

<text>
<tspan x="40 80 120 160 200 240 280 320 360" y="150">Brown and</tspan>
<tspan x="60 100 140 180 220 260 300 340" y="200">feathery</tspan>
</text>

<text>
<tspan x="30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510"
rotate="0 10 30 50 70 90 110 130 150 170 190 210 240 270 300" y="300">Ducks and
Drakes</tspan>
</text>

-- 16 --
© Oxford Brookes University 2001

3.4 Basic Shapes
The six basic shape elements in SVG are shorthands for the path element. They are line,
polyline, polygon, rect, circle and ellipse. The main attributes of each are given in this
example (see Figure 3.7) and the meaning of the attributes in the following table.

<circle cx="70" cy="100" r="50" />
<rect x="150" y="50" rx="20" ry="20" width="135" height="100" />
<line x1="325" y1="150" x2="375" y2="50" />
<polyline points="50, 250 75, 350 100, 250 125, 350 150, 250 175, 350" />
<polygon points=" 250, 250 297, 284 279, 340 220, 340 202, 284" />
<ellipse cx="400" cy="300" rx="72" ry="50" />

Figure 3.7: Basic elements

Command Meaning Parameters

line Renders a line between two points x1 and y1 define first point
x2 and y2 define second point

polyline Renders a sequence of lines
between points points defines a sequence of x,y coordinates

polygon
Renders an area defined by a
sequence of lines points defines a sequence of x,y coordinates

rect Renders a rectangular area

x and y define top left corner
width and height define size of rectangle
rx and ry define the radii of the elliptic arc
that rounds the corners

circle Renders a circle cx and cy define the centre
r defines the radius

ellipse Renders an ellipse cx and cy define the centre
rx and ry define the two radii

-- 17 --
© Oxford Brookes University 2001

4. Grouping

l 4.1 Introduction
l 4.2 Coordinate Transformations
l 4.3 Clipping
l 4.4 Masking

4.1 Introduction
Frequently there is a need to group drawing elements together for one reason or another. One
reason is if a set of elements share the same attribute. However, probably the major use is to
define a new coordinate system for a set of elements by applying a transformation to each
coordinate specified in a set of elements. Grouping is also useful as the source or destination
of a reference.
Grouping in SVG is achieved by the g element. A set of elements can be defined as a group
by enclosing them within a g element. For example:

<g style="fill:red;stroke:black">
<circle cx="70" cy="100" r="50" />
<rect x="150" y="50" rx="20" ry="20" width="135" height="100" />
<line x1="325" y1="150" x2="375" y2="50" />
<polyline points="50, 250 75, 350 100, 250 125, 350 150, 250 175, 350" />
<polygon points=" 250, 250 297, 284 279, 340 220, 340 202, 284" />
<ellipse cx="400" cy="300" rx="72" ry="50" />
</g>

The g element can have any of the attributes or style properties defined for it that are generally
applicable to individual drawing elements. In the example above, all the basic shapes will be
rendered with the interior red and the border black.

4.2 Coordinate Transformations
The transform attribute applied to a g element defines a transformation to be applied to all the
coordinates in the group. For example:

<g transform="translate(100,0)">
<circle cx="70" cy="100" r="50" />
<rect x="150" y="50" rx="20" ry="20" width="135" height="100" />
</g>

Instead of the circle being drawn centred on the point (70,100) it will now be drawn centred on
the point (170,100). The rectangle will have a top left corner of (250,50) instead of (150,50).
Consequently, a useful method of defining a composition made up of a number of graphical
objects is to define each object as a group using the most appropriate coordinate system and
then use the transformations applied to the group to construct the graphic as a whole. Groups
can be nested to any depth and transformations applied to each. In consequence, a diagram
can be constructed out of sub-assemblies that come together to produce objects that are then
composed to produce the diagram.

-- 18 --
© Oxford Brookes University 2001

The possible transformations are:

It is also possible to define a matrix that performs a composite set of transformations.

The transform attribute can consist of a sequence of individual transformations in which case
they are performed in the order right to left. The same effect can be achieved in a much more
readable way by nesting several g elements, each with a single transformation. It is
recommended that the nested approach is the one taken.
Figure 4.1 gives a montage of various transformations where the text defining the
transformation is also transformed.

Figure 4.1: Transformations

The transform attribute can also be applied to the various drawing elements directly but it
tends to be most useful when applied to a group.

Transformation Meaning Parameters

translate Defines a translation of the coordinates x and y defining the x and y
translation

scale
Defines a scaling of the X and Y
coordinates

sx and sy defining the scaling in
the X and Y directions
s defining the same scaling in
the X and Y directions

rotate Defines a rotation about a point

angle, x and y defining a clock-
wise rotation of angle degrees
about the point (x,y)
angle defining a clock-wise
rotation of angle degrees about
the origin

skewX Defines a skew along the X axis
angle degrees defining a skew
of the X position by Y*tan(angle)

skewY Defines a skew along the Y axis
angle degrees defining a skew
of the Y position by X*tan(angle)

-- 19 --
© Oxford Brookes University 2001

4.3 Clipping
A group of elements can be clipped against a clip path which is defined by a clipPath element:
element:

<clipPath id="myClip">
<circle cx="350" cy="100" r="50"/>
</clipPath>

<g style="stroke:none;clip -path:url(#myClip)">
<rect style="fill:red" x="0" y="0" width="500" height="20" />
<rect style="fill:white" x="0" y="20" width="500" height="20" />
<rect style="fill:blue" x="0" y="40" width="500" height="20" />
<rect style="fill:red" x="0" y="60" width="500" height="20" />
<rect style="fill:white" x="0" y="80" width="500" height="20" />
<rect style="fill:blue" x="0" y="100" width="500" height="20" />
<rect style="fill:white" x="0" y="120" width="500" height="20" />
<rect style="fill:blue" x="0" y="160" width="500" height="20" />
<rect style="fill:red" x="0" y="180" width="500" height="20" />
<rect style="fill:white" x="0" y="200" width="500" height="20" />
<rect style="fill:blue" x="0" y="220" width="500" height="20" />
<rect style="fill:red" x="0" y="240" width="500" height="20" />
<rect style="fill:white" x="0" y="260" width="500" height="20" />
<rect style="fill:blue" x="0" y="280" width="500" height="20" />
<rect style="fill:red" x="0" y="300" width="500" height="20" />
<rect style="fill:white" x="0" y="320" width="500" height="20" />
</g>

The group of rectangles are clipped against the circle basic shape. The clipPath element has
an id attribute and the g element has a style or attribute clip-path that specifies the path to be
used for clipping. It is also possible to clip against a path or even text:

<clipPath id="myClip">
<path d="M 0 112 C 40 160 120 80 160 106 C 160 106 165 110 170 103 C 180 0 220
20 260 61 C 260 61 280 73 290 68 C 288 80 272 85 250 85 C 195 83 210 110 230 120
C 260 140 265 185 200 191 C 150 195 30 195 0 112 Z"/> </clipPath>

<clipPath id="myClip">
<text x="10" y="310" style="font-size:150">DUCK</text>
</clipPath>

For referenced items, such as clip paths, it is considered good practice to surround them with
a defs element to emphasise that they are not rendered directly. The defs element acts rather
like a g element that has the visibility attribute set to hidden.

-- 20 --
© Oxford Brookes University 2001

Figure 4.2 shows the results of the three clipping paths defined above.

Figure 4.2: Clipping

5. Filling

l 5.1 Fill Properties
l 5.2 Colour
l 5.3 Fill Rule
l 5.4 Opacity
l 5.5 Colour Gradients

5.1 Fill Properties
The main fill properties that can be defined as either attributes or properties of SVG basic
shapes, paths, text or groups are:

l fill: the method of filling the area with a solid colour or gradient. The value none
indicates that the area is not to be filled.

l opacity: how opaque the paint is that fills the area
l fill-rule: for complex paths, the definition of the area to be filled

An example setting all three might be:

<path style="fill:red;opacity:0.5;fill-rule:evenodd" d="M10,20h100v50h-80v-70h-
20v20z" />

The fill property can either define a colour to be used to paint the area or it can define a colour
gradient. We will discuss how colours are specified first and leave the specification of
gradients until later.

-- 21 --
© Oxford Brookes University 2001

5.2 Colour
Colour values are used for various operations in SVG including filling and stroking. Colour can
be defined in the same set of ways that it can be defined in CSS:

l A colour name such as red, blue, green etc.
l A numerical RGB specification defining the red, green and blue components of the

colour in one of three ways:
¡ rgb(r,g,b) where r, g and b are values in the range 0 to 255
¡ #rgb where r, g and b are hexadecimal values (for example #f00)
¡ #rrggbb where rr, gg and bb define a value in the range 0 to 255 as two

hexadecimal values

The four rectangles defined below will all be filled with approximately the same colour (the
short hexadecimal form does not quite have the required accuracy).

<rect width="10" height="10" style="fill:coral" />
<rect width="10" height="10" style="fill:rgb(255,127,80)" />
<rect width="10" height="10" style="fill:#f75" />
<rect width="10" height="10" style="fill:#ff7f50" />

There are over 140 colour names defined in SVG and these are given in Appendix A. Figure
5.1 shows a sample of the colours available.

Figure 5.1: Some SVG Colours

-- 22 --
© Oxford Brookes University 2001

5.3 Fill Rule
Filling an area defined by a path, basic shape or text requires there to be a clear definition of
what is inside the path and should be filled and what is outside. For simple paths that do not
cross, the inside is fairly obvious. However, for a path that intersects itself or is made up of a
number of segments (such as a donut shape), the definition of inside and outside is less clear.
SVG defines two different methods of defining inside and the user may use either:

l evenodd: the number of intersections that a line between a point and infinity makes
with the path are counted. If the number is odd, the point is inside the area and should
be filled.

l nonzero: the number of times the path winds around a point is counted. If the number
is non-zero, the point is inside.

Figure 5.2 shows the different results obtained for two paths. Note that it is necessary to know
the order in which the two triangles are drawn in order to define the area. If the second triangle
had been drawn in the order 5, 4, 6 the area inside for both the evenodd and nonzero methods
would have been the same. For simple shapes, staying with the evenodd rule is a good bet.

Figure 5.2: Fill Rules

5.4 Opacity
Graphics in SVG are not restricted to being invisble or opaque. It is possible for any area to be
filled at an opacity that varies between 1.0 (opaque) and 0.0 (transparent). Properties are
available for specifying the opacity of filling and stroking separately but for simple examples it
is sufficient to use the opacity to control both stroke and fill opacity together. Rules exist for
combining two semi -transparent objects that overlap each other. Figure 5.3 shows various
objects of different levels of transparency overlapping. In the case of the ducks, they are
drawn top to bottom with decreasing opacity. The more opaque duck behind the more
transparent one often looks as though it is in front rather than behind where they overlap due
to this combination.

-- 23 --
© Oxford Brookes University 2001

Figure 5.3: Opacity

5.5 Colour Gradients
As mentioned earlier, the fill property can have more exotic values than a simple colour
specification. One of these is to specify a colour gradient that defines a gradation of colour
across the area to be filled and that gradient can change from one colour to another or range
across a whole gamut of colours. It is possible also to specify whether the gradient is a linear
transformation from one point to another or radiates from some origin.
The colour specification in the fill property points to a URL where the gradient is defined:

<rect x="20" y="20" width="290" height="120" style="fill:url(#MyGradient)"/>

Here the fill property is defined by pointing at the definition MyGradient. The gradient
specification has the form:

<linearGradient id="MyGradient" gradientUnits="userSpaceOnUse" x1="80" y1="44"
x2="260" y2="116">
<stop offset="0" style="stop-color:blue"/>
<stop offset="0.5" style="stop-color:white"/>
<stop offset="1" style="stop-color:green"/>
</linearGradient>

This is the one used at the top right hand side of Figure 5.4. The element is either a
linearGradient or a radialGradient. Note the use of Camel case with each word separating
the previous one by capitalising the first character. This is used throughout SVG. The main
element defines the major parameters of the gradient and the offset element defines the way
the gradient is rendered in more detail.

-- 24 --
© Oxford Brookes University 2001

In this particular example, the main attributes of the linear gradient are the id used to
associate it with its use, the point (x1,y1) that defines the start of the gradation and the point
(x2,y2) that defines where the gradation ends. Outside this range, the first and last values are
retained. This allows the user to define a middle part of the fill as being graded while the
remainder has the solid colours defined at the start and end. In the top left part of the Figure,
the start, middle and end offset positions are identified by circles.
In the example above, positions are defined between (x1,y1) and (x2,y2) where certain colours
will appear. In this example, the colour at (x1,y1) (offset=0.0, the starting position) will be blue
and at (x2,y2) (offset=1.0, the finishing position) it will be green. Half way between, the colour
will be white (offset=0.5). The number of offsets can be as many as you like as can be seen in
the top right where the duck has a large number of offsets specified.

Defining radial gradients is slightly more complex:

<radialGradient id="MyGradient2" gradientUnits="userSpaceOnUse" cx="130"
cy="270" r="100" fx="70" fy="270">
<stop offset="0" style="stop-color:blue"/>
<stop offset="0.5" style="stop-color:white"/>
<stop offset="1" style="stop-color:green"/>
</radialGradient>
<rect x="20" y="160" width="290" height="220" style="fill:url(#MyGradient2)"/>

The radialGradient specifies a circumference where the offset=1.0 value is defined by
defining its centre (cx,cy) and the radius r. The easy option would have been to define the
centre (cx,cy) as the offset=0.0 position. instead, a separate offset=0.0 position is defined
separately as (fx,fy). The offset=1.0 position is shown in the diagram by the yellow circle and
the circle shows the position of the focus. Again, the offset elements define the colours at
inbetween positions.

Figure 5.4: Colour Gradients

Once more, a simple example is shown on the lower left and a more complex radial gradient is
shown on the lower right.

-- 25 --
© Oxford Brookes University 2001

6. Stroking

l 6.1 Stroke Properties
l 6.2 Width and Style
l 6.3 Line Termination and Joining

6.1 Stroke Properties
A subset of the complete set of stroke properties is:

l stroke: the method of rendering the outline with a solid colour or gradient. The possible
values are the same as for the fill property. A value of none indicates that no outline is
to be drawn.

l stroke-width: defines the width of the outline.
l stroke-dasharray: defines the style of the line (dotted, solid, dashed etc).
l stroke-dashoffset: for a dashed line, indicates where the dash pattern should start.
l stroke-linecap: defines the way the end of a line is rendered.
l stroke-linejoin: defines how the join between two lines is rendered.
l stroke-linemiterlimit: places some constraints on mitered line joins.

The set of stroke properties are illustrated in Figure 6.1.

Figure 6.1: Stroke Properties

6.2 Width and Style
The property stroke-width property defines the width of the line in the units specified. All the
transformations that apply to the graphic object also apply to the stroke-width. So scaling an
object by a factor 2 will also double the stroke width. A value of zero is equivalent to setting
the value of the property stroke to none.

-- 26 --
© Oxford Brookes University 2001

Outlines are normally rendered as solid lines. To render them dashed or dotted, the stroke-
dasharray property has to be set. Its value is either none to indicate a solid line or is a set of
numbers that specify the length of a line segment followed by the length of the space before
the next segment followed by the next line segment and so on. Figure 6.1 shows two
examples. The first (stroke-dasharray:10 10) defines a dashed line where the dashes and
spaces between are 10 units long. The second example (stroke-dasharray:9 5 15 5) defines a
line consisting of short and long dashes with a 5-unit space between each. If an odd number
of values is given, these are repeated to give an even number. So 9 5 15 is equivalent to 9 5
15 9 5 15. Commas rather than spaces can be used to separate the values.

Normally the rendering of the outline will start with the first value in the stroke-dasharray list.
If this is not what is required, the stroke-dashoffset property specifies how far into the dash
pattern to start the rendering. For example, a value of 16 in the example 9 5 15 9 5 15 above
would mean the stroke rendering would start 13 9 5 15 etc, that is the first dash and space
plus the first 2 units of the second dash.

6.3 Line Termination and Joining
When a line or path is terminated, the normal result is to butt the end of the line (the line
finishes at the end point and the end of the line is perpendicular to the direction of the line).
In Figure 6.1, the poor rendering this achieves when two lines are drawn from the same point
is shown. To combat this, two other values can be specified by the stroke-linecap property. If
set to the value round, a semi-circle is added to the end of the line while the value square
extends the line by the width of the line. In both cases the rendering of two lines or paths
coincident at a point will be improved.

A similar problem occurs at intermediate points in a path made up of straight line segments.
The normal result is to miter the two lines (the outer edges are extended until they meet). This
is not always the most pleasing effect. Two other values can be specified by the stroke-
linejoin property. A value of round rounds off the join and bevel squares off the join of the
two lines.

The miter line join looks particularly unattractive when the two line segments are at a small
angle to each other (see Figure 6.1). For the miter value of stroke-linejoin, it is possible to
control the extent that the miter extends beyond the end of the line. The property stroke-
miterlimit defines a value greater than 1 which is the maximum ratio allowed between the
miter length and the stroke width. If this ratio is exceeded, the line join has a bevel applied to
it. In Figure 6.1, the value of 4 bevels off the worst of the three joins while the value of 1 bevels
all of the three joins.

-- 27 --
© Oxford Brookes University 2001

7. Text

l 7.1 Rendering Text
l 7.2 Font Properties
l 7.3 Text Properties

7.1 Rendering Text
There are more properties associated with the text element than any other. Many are still to
be fully implemented in the products currently on the market. Many are concerned with
achieving good results when the text is non-European requiring a different writing direction
from left-to-right and even bi-directional text (in Hebrew, for example, the writing direction is
normally right-to-left but embedded European words are written left-to-right).

The properties are a superset of the ones defined in CSS.

7.2 Font Properties
Figure 7.1 shows some of the properties that are primarily concerned with how individual
characters are rendered.

The font-family property defines the font to be used for the text. The font-size property
defines the size of the characters using one of the SVG unit measures.
The font-style property has the values normal, italic and oblique.

The font-weight property defines the boldness of the rendering and has the same set of
possible values as those used in CSS. Similarly, the text-decoration property has the same
possible values as those used in CSS.
Text is rendered in a similar way to paths and both the interior fill of the characters and the
stroke to be used for the outline can be specified by the fill and stroke properties.

Figure 7.1: Font Properties

-- 28 --
© Oxford Brookes University 2001

7.3 Text Properties
One of the most useful properties associated with the whole text string is the text-anchor
property (Figure 7.2) which specifies where in the text string the text origin is located. This is
particularly useful when trying to centre text, say, within a rectangle. In this case defining the
origin at the middle position in the x-direction and defining the value as middle will achieve the
desired result.

Simple formulae can be rendered using the baseline-shift property. The example in Figure
7.2 requires the following:

<text x="10" y="240" style="fill:blue" >x
<tspan style="baseline-shift:super">super</tspan>
+y
<tspan style="baseline-shift:sub">sub</tspan>
+1
</text>

The writing-mode property defines the direction that the text is drawn. The possible values
are lr, tb , and rl.

Figure 7.2: Text Properties

-- 29 --
© Oxford Brookes University 2001

8. Animation

l 8.1 Simple Animation
l 8.2 Animation Control
l 8.3 Animation along a Path

8.1 Simple Animation
SVG provides some quite exciting animation facilities that can brighten up your web pages and
and are useful in a variety of training and teaching applications. Four elements are provided
that define simple animations over attributes and properties:

l animate
l set
l animateTransform
l animateColor

Here is a very simple example to get started with:

<rect x="20" y="10" width="120" height="40" >
<animate attributeName="width" from="120" to="40" begin="0s" dur="8s" fill="freeze" />
<animate attributeName="height" from="40" to="82" begin="6s" dur="7s" fill="freeze" />
</rect>

Figure 8.1: Simple Animation

-- 30 --
© Oxford Brookes University 2001

The animate element defines animation to be applied to any of the attributes of the rect
element. In this example, two animations are performed on the element. The first starts the
animation at the time the SVG is drawn (0s) and the width of the rectangle is changed from
120 to 40 over the next 8 seconds. Independently, the second animation waits until 6 seconds
have elapsed and then increases the height of the rectangle from 40 to 82 over the next 7
seconds. At 8 seconds into the animation, the width stops increasing and stays at the final
value (that is what the freeze value indicates). After 13 seconds the height stops increasing,
and from then on there is a static rectangle displayed with height 81 and width 40. This is
illustrated in Figure 8.1 where the rectangle is displayed at times 0 to 15 seconds.

The animate element has a slightly different format when the aim is to animate a property
defined as part of the style attribute. The element then has the form:

<circle cx="50" cy="50" r="20" style="fill:red;opacity:1">
<animate attributeType="CSS" attributeName="opacity" from="1" to="0" dur="4s"
repeatCount="indefinite" end="15s fill="freeze""/>
<set attributeType="CSS" attributeName="fill" to="blue" begin="8s" />
<animate attributeName="r" from="20" to="46" dur="13s" />
</circle>

The attributeType is given the value CSS and the CSS name is defined by the
attributeName attribute. For values that do not have continuous ranges, these can be
changed by the set element. The results of this animation are shown in Figure 8.2.

Figure 8.2: Animating Style properties

-- 31 --
© Oxford Brookes University 2001

The animateTransform element animates the transformation to be applied to a graphical
object. In the example below, the scaling, rotation and translation of the duck are animated.
Note that only a single transformation can be animated per element so to achieve this
compound effect the path element is enclosed within two grouping elements and one
transformation animation is applied to each. The result is shown in Figure 8.3.

<g>
<g>
<path d="M 20 100 c 40 48 120 -32 160 -6 c 0 0 5 4 10 -3 c 10 -103 50 -83 90 -42 c 0 0
20 12 30 7 c -2 12 -18 17 -40 17 c -55 -2 -40 25 -20 35 c 30 20 35 65 -30 71 c -50 4 -
170 4 -200 -79 z">
<animateTransform attributeName="transform" attributeType="XML" type="scale"
from="0.4" to="0.3" begin="0s" dur="4s" fill="freeze" />
</path>
<animateTransform attributeName="transform" attributeType="XML" type="rotate"
from="0" to="21" begin="4s" dur="7s" fill="freeze" />
</g>
<animateTransform attributeName="transform" attributeType="XML" type="translate"
from="0,0" to="40,20" begin="11s" dur="4s" fill="freeze" />
</g>

Figure 8.3: Animating Transforms

To animate a colour, the animateColor element is used. For example:

<animateColor attributeType="CSS" attributeName="fill" from="aqua" to="crimson"
begin="0s" dur="10s" fill="freeze"/>

The to and from attributes can have the colour specified in any of the usual ways.

-- 32 --
© Oxford Brookes University 2001

8.2 Animation Control
Objects that have been animated so far have had linear movement in terms of parameter
changes over the duration of the animation. Objects start and stop abruptly. For the animation
elements described so far it is possible to define an attribute calcMode that specifies how the
animation proceeds over time. One of its possible values is linear which is the default. A more
interesting value is spline. In this case, a values attribute defines a list of values and a spline
function which defines the intermediate value to be used at a specific point in time. The spline
function to be used is defined by the keySplines attribute. For example:

<circle cx="10" cy="90" r="5" style="fill:black">
<animate attributeName="cy" values="90;10" calcMode="spline" keySplines="1 0 0 1"
dur="10s"/>
<animate attributeName="cx" values="10;140" calcMode="spline"
keySplines="0 .75 .25 1" dur="10s"/>
<animate attributeName="cy" values="10;90" calcMode="spline" keySplines="1 0 0 1"
begin="10s" dur="6s"/>
<animate attributeName="cx" values="140;10" calcMode="spline"
keySplines="0 .75 .25 1" begin="10s" dur="6s"/>
</circle>

The first animate element animates the cy value from 90 to 10 over 10 seconds but with the
intermediate positions defined by a cubic bezier which goes from (0,0) to (1,1) with control
points (1,0) and (0,1). The four coordinates of the two control points are the four values
defined by the keySplines attribute. The X-axis defines the fraction of the duration passed
while the Y-axis gives the fraction of the distance travelled.

In Figure 8.4, the shape of the change for various values of keySplines is shown. The top left
shows that if the first control point (in grey) coincides with the start point and the second
control point in green coincides with the second control point then the result is a linear change.

In the example, the (0 .75 .25 1) value defines a curve where there rapid change earlier on
followed by very little change near the end. The value (1 0 0 1) has little change early and late
but very rapid change in the middle period.

Figure 8.4: Spline Control

-- 33 --
© Oxford Brookes University 2001

The animation of the circle defined above is shown in Figure 8.5 with the last image showing
all the intermediate positions of the animated circle. The set for the first 10 seconds are in blue
and the remainder in green.

Figure 8.5: Animation Control

The data associated with a path element can also be animated although there is a constraint
that the various path segments making up the path must be the same in structure in both the
start and finish positions. Effectively each individual value is interpolated between the start and
end value. For example:

<path>
<animate attributeName="d" from="M 20 100 c 40 48 120 -32 160 -6 c 0 0 5 4 10 -3 c
10 -103 50 -83 90 -42 c 0 0 20 12 30 7 c -2 12 -18 17 -40 17 c -55 -2 -40 25 -20 35 c 30
20 35 65 -30 71 c -50 4 -170 4 -200 -79"
to="M 80 100 c 40 48 120 -2 160 -36 c 0 0 5 -11 10 -18 c 10 -73 50 -23 90 -12 c 0 0 20
-48 30 22 c -2 12 -18 47 -40 17 c 5 -2 20 -5 -20 35 c 30 20 35 95 -30 86 c -80 -116 -
260 94 -200 -94"
fill="freeze" dur="1s"/>
</path>

-- 34 --
© Oxford Brookes University 2001

The overall result is shown in Figure 8.6.

Figure 8.6: Animate path data

8.3 Animation along a Path
An object can be animated so that it proceeds along a specified path using the
animateMotion element. For example:

<path d="M0 0 v -2.5 h10 v-5 l5 7.5 l-5 7.5 v-5 h -10 v-2.5" style="fill:red">
<animateMotion dur="6s" repeatCount="indefinite" path="M 100 150 c 0 -40 120 -80
120 -40 c 0 40 120 80 120 40 c 0 -60 -120 -100 -120 -40 c 0 60 -120 100 -120 40"
rotate="auto" />
</path>

-- 35 --
© Oxford Brookes University 2001

The object consists of an arrow and the animateMotion element animates along a figure of
eight path defined by the cubic beziers and starting on the left side. The rotate attribute
defines the orientation of the arrow as it proceeds along the path. The value auto keeps the
orientation of the arrow so that it always points along the path. A value specified as a number
indicates that the arrow should stay at that constant rotation from its initial position irrespective
of where it is on the curve. The value auto-reverse positions the arrow so that it always points
away from the direction of motion. Figure 8.7 shows four examples of the rotate attribute with
the positions of the arrow as the animation takes place in each case. The latest position is
opaque and the earlier positions are displayed with decreasing opacity.

Figure 8.7: Animate along a path

-- 36 --
© Oxford Brookes University 2001

9. Linking and Templates

l 9.1 Linking
l 9.2 Symbols and their Use
l 9.3 Images
l 9.4 Masking

9.1 Linking
Linking in SVG is much the same as in HTML. SVG has an a element that indicates the
hyperlink and defines where the link goes. For example:

<a xlink:href="http://www.w3.org">
<rect width="200" height="40" /> <text x=100" y="30" style="text -anchor:middle">My
button</text>

This example consists of a rectangle with the word My button in the middle. Clicking on any
part of the rectangle causes the browser to link to the W3C home page. Note that the URL is
defined by xlink:href rather than href. This is because the aim is to use all the functionality of
XLink when it is finalised. At the moment this acts just the same as the href attribute in HTML.
The user should be careful to enclose both the rectangle and the text within the a element.
Otherwise, clicking on the part of the rectangle where the text is would not cause the link to
take place. The text appears later than the rectangle and so sits on top of the rectangle.

9.2 Symbols and their Use
Many drawings consist of the same object appearing a number of times in different places with
possible minor variations. An example would be symbols on a map. SVG provides a rather
simple minded symbol facility that is useful on occasions. However, by providing no
parameterisation of the symbol, the times it is useful are limited.
A symbol can contain any of the usual drawing elements. For example:

<symbol id="duck">
<path d="M 10 90
c 40 48 120 -32 160 -6
c 0 0 5 4 10 -3 c 10 -103 50 -83 90 -42
c 0 0 20 12 30 7 c -2 12 -18 17 -40 17
c -55 -2 -40 25 -20 35 c 30 20 35 65 -30 71
c -50 4 -170 4 -200 -79 z"/>
<text x="150" y="120" style="text-anchor:middle">The Duck</text>
</symbol>

The symbol consists of the path defining the duck and the text The Duck positioned in its
centre. An instance of the symbol is created by the use element as follows:

<use x="0" y="0" xlink:href="#duck" style="stroke:black;stroke-width:2;fill:none;font-
size:48" />

-- 37 --
© Oxford Brookes University 2001

The use element is effectively replaced by a g element with any attributes associated with the
use element being transfered to the g element except that the origin specified by the attributes
x and y become a transform attribute appended to the end of any transformations defined on
the g element. This is a rather bizarre way of doing it and requires some careful thought before
understanding what the result is likely to be. Figure 9.1 shows various examples of the use
element:

<use x="0" y="0" xlink:href="#duck" style="stroke:black;stroke-width:2;fill:none;font-
size:48" />
<use x="300" y="0" xlink:href="#duck" style="stroke:black;fill:red;font-size:40;font-
family:Verdana" />
<use x="0" y="400" xlink:href="#duck" transform="scale(0.5)"
style="stroke:none;fill:red;font-size:64" />
<use x="0" y="0" xlink:href="#duck" transform="translate(0,300) scale(0.5)"
style="stroke:white;stroke-width:3;fill:blue;font-size:40" />
<use x="300" y="200" xlink:href="#duck" style="stroke:black;fill:none;font-
size:16;writing-mode:tb;" />

The first use is quite straightforward. The duck and associated text are drawn in outline (top
left) and the font size is specified by the font-size property to be 40. The second use in the top
right sets the fill property to be red and changes the font to Verdana. Notice that if the text is
filled so is the path. It would have been better if the two could have been defined separately
either by having separate fill properties for text and path or being able to parameterise the
symbol.

The third use illustrates the problem as no outline is drawn and it is only by making the text
overflow the duck that it can be seen at all. This small duck also illustrates the problem with
the way the use is executed. The transform to be applied is changed (by the x, y positioning
attributes) to:

transform="scale(0.5) translate(0,400)"

Multiple transforms are applied right to left. In this case this results in the object being scaled
but the translate is also scaled. So the translation applied is only (0,200) which is why the red
duck appears where it does.

In the fourth use, the x and y values are set to zero resulting in no additional transformation
being generated. The scaling is done first followed by the translation in this case. A good rule
is therefore if you are going to transform the symbol, do all the transformation using the
transform property.

The final example shows how the writing direction can be changed.

-- 38 --
© Oxford Brookes University 2001

Figure 9.1: Symbols and their Use

9.3 Images
Sometimes it is useful to include bitmap images in an SVG document. These can be PNG, GIF
and JPG images and are included in much the same way that images are included in an
HTML document:

<image> x="20" y="40" width="100" height="200" xlink:href="mypicture.gif">

The image is positioned with the top left corner at the position specified and fitted into the
width and height given.

-- 39 --
© Oxford Brookes University 2001

9.4 Masking
SVG also provides a facility called masking. The mask object effectively defines the
transparency value to be applied to the drawing at each position defined by the mask. For
example:

<linearGradient id="Gradient" gradientUnits="userSpaceOnUse" x1="0" y1="0"
x2="500" y2="0">
<stop offset="0" style="stop-color:white; stop-opacity:0"/>
<stop offset="1" style="stop-color:white; stop-opacity:1"/>
</linearGradient>

<rect x="0" y="0" width="500" height="60" style="fill:#FF8080"/>

<mask maskContentUnits="userSpaceOnUse" id="Mask">
<rect x="0" y="0" width="500" height="60" style="fill:url(#Gradient)" />
</mask>
<text x="250" y="50" style="font-family:Verdana; font-size:60; text-
anchor:middle;fill:blue; mask:url(#Mask)">
MASKED TEXT
</text>
<text x="250" y="50" style="font-family:Verdana; font-size:60; text-
anchor:middle;fill:none; stroke:black; stroke-width:2">
MASKED TEXT
</text>

First a pink rectangle is drawn and then the text is drawn twice. The first one fills the text in
blue but the transparency value of the text comes from the mask which is a gradient that is
fully transparent on the left and fully opaque on the right. The second draws the black outline.

Figure 9.2 shows the masked text at the top followed by a blue rectangle masked in a similar
way and finally the duck masked by a circle with transparency varying from opaque on the
right to transparent on the left.

Figure 9.2: Masking

-- 40 --
© Oxford Brookes University 2001

10. Interaction

l 10.1 Interaction and the DOM
l 10.2 Interaction Methods

10.1 Interaction and the DOM
SVG provides support for interacting with an SVG document using the facilities in the W3C
Document Object Model 2.0 (DOM) Recommendation. The DOM provides a standard way of
accessing the attributes and properties defined in an SVG document and changing them via a
scripting language. For example:

<svg viewbox= "0 0 600 400" >
<script type="text/ecmascript"><![CDATA[
function changerect(evt)
{
var svgobj=evt.target;
svgstyle = svgobj.getStyle();
svgstyle.setProperty ('opacity', 0.3);
svgobj.setAttribute ('x', 300);
}
]]>
</script>
<rect onclick="changerect(evt)" style="fill:blue;opacity:1" x="10" y="30" width="100"
height="100" />
</svg>

This defines a diagram consisting of a single opaque blue rectangle close to the left hand
edge. When the mouse or pointing device is clicked over it, the rectangle is repositioned
further to the right and becomes semi-transparent.

As scripting languages vary in their capabilities and browsers vary in their support of them, the
user may need some trial and error to get started. A general point is that the SVG script
element behaves in much the same way as the one in HTML. In consequence, following the
style used for HTML scripting will usually work for SVG as well.

In the example, the onclick attribute calls the script function changerect when the mouse click
occurs. The variable evt passed as parameter to the changerect function enables the object
over which the mouse was clicked to be identified. The property target of evt gives a reference
to the object clicked. The variable svgobj is set to the object that was clicked. The ECMAScript
method getStyle gives a reference to the object's style attribute, setProperty sets the value of
a style property. The method setAttribute sets an attribute value.

Some of the events that can be handled by SVG are:

l onclick
l onactivate
l onmousedown
l onmouseover
l onmousemove
l onmouseout
l onload

-- 41 --
© Oxford Brookes University 2001

The event onactivate is more general than onclick and will work with devices other than
mouse-like devices. The onload event gives a general method of invoking a script when an
SVG document is loaded. For example:

<svg viewbox= "0 0 600 400" onload="changerect(evt)">
<script type="text/ecmascript"><![CDATA[
function changerect(evt)
{
var svgdoc = evt.getCurrentNode().getOwnerDocument();
svgobj = svgdoc.getElementByID ('MyRect')
svgstyle = svgobj.getStyle();
svgstyle.setProperty ('opacity', 0.3);
svgobj.setAttribute ('x', 300);
}
]]>
</script>
<rect id="MyRect" style="fill:blue;opacity:1" x="10" y="30" width="100" height="100" />
</svg>

In this example, the variable svgdoc is set to point to the SVG document as a whole and
svgobj is set to the rect object with id equal to MyRect. In this case, the rectangle will appear
semi-transparent and on the right as soon as the SVG document is loaded.

It can be seen from these examples that the starting point for any interaction with an SVG
document is obtaining a reference to the object tree (at an appropriate node) that represents
the document. There are several ways to do this and different browsers may support different
approaches. In designing an interactive SVG application, it is wise to start by thinking carefully
about where modification will be required, and design the SVG document to facilitate this (for
example, by including id attributes on appropriate elements).

10.2 Interaction Methods
The most useful methods for modifying an SVG document are:

l getElementById
l getStyle
l setProperty
l setAttribute
l getAttribute
l cloneNode

-- 42 --
© Oxford Brookes University 2001

To create new elements, a useful method is cloneNode. For example:

<svg viewbox= "0 0 600 400" >
<script type="text/ecmascript"><![CDATA[
function addrect(evt)
{ var svgobj=evt.target;
var svgdoc = svgobj.getOwnerDocument();
var newnode = svgobj.cloneNode(false);
svgstyle = newnode.getStyle();
var colors = new Array('red', 'blue', 'yellow', 'cyan', 'green', 'lime', 'magenta', 'brown',
'azure', 'burlywood', 'blueviolet', 'crimson');
var x = 10+480*Math.random();
var y = 10+330*Math.random();
var width = 10+100*Math.random();
var height = 10+50*Math.random();
var fill = Math.floor(colors.length*Math.random());
if (fill == colors.length) fill = colors.length-1;
fill = colors[fill];
svgstyle.setProperty ('opacity', 0.3+0.7*Math.random());
svgstyle.setProperty ('fill', fill);
newnode.setAttribute ('x', x);
newnode.setAttribute ('y', y);
newnode.setAttribute ('width', width);
newnode.setAttribute ('height', height);
var contents = svgdoc.getElementById ('contents');
newnode = contents.appendChild (newnode);
}]]></script>
<rect x="1" y="1" style="fill:#bbffbb" width="598" height="398"/>
<g id="contents">
<rect onclick="addrect(evt)" style="fill:blue;opacity:1" x="250" y="100" width="20"
height="20" />
</g>
</svg>

Hitting the single blue square rectangle in the middle of the diagram causes the function
addrect to be invoked. This sets svgobj to point at the rectangle and svgdoc to point at the
SVG document as a whole. The variable newnode is a new rectangle object (initially a copy of
the element hit) that has its fill colour, position, size and opacity defined by resetting the
attrributes and properties. The enclosing group with id set to contents has this new element
appended to it as a new child. So after the first click on the blue rectangle the diagram will
consist of two rectangles where the second has its position, size and properties randomly
defined. After many clicks, the diagram might be as shown in Figure 10.1. This example
illustrates a general style, namely creating new elements within an SVG document and then
incorporating them into the SVG structure at the appropriate places.

-- 43 --
© Oxford Brookes University 2001

Figure 10.1: Cloning Rectangles

-- i --
© Oxford Brookes University 2001

A. SVG Colours

Colour Name RGB Value Colour Name RGB Value

aliceblue (240, 248, 255) darkslategrey (47, 79, 79)

antiquewhite (250, 235, 215) darkturquoise (0, 206, 209)

aqua (0, 255, 255) darkviolet (148, 0, 211)

aquamarine (127, 255, 212) deeppink (255, 20, 147)

azure (240, 255, 255) deepskyblue (0, 191, 255)

beige (245, 245, 220) dimgray (105, 105, 105)

bisque (255, 228, 196) dimgrey (105, 105, 105)

black (0, 0, 0) dodgerblue (30, 144, 255)

blanchedalmond (255, 235, 205) firebrick (178, 34, 34)

blue (0, 0, 255) floralwhite (255, 250, 240)

blueviolet (138, 43, 226) forestgreen (34, 139, 34)

brown (165, 42, 42) fuchsia (255, 0, 255)

burlywood (222, 184, 135) gainsboro (220, 220, 220)

cadetblue (95, 158, 160) ghostwhite (248, 248, 255)

chartreuse (127, 255, 0) gold (255, 215, 0)

chocolate (210, 105, 30) goldenrod (218, 165, 32)

coral (255, 127, 80) gray (128, 128, 128)

cornflowerblue (100, 149, 237) grey (128, 128, 128)

cornsilk (255, 248, 220) green (0, 128, 0)

crimson (220, 20, 60) greenyellow (173, 255, 47)

cyan (0, 255, 255) honeydew (240, 255, 240)

darkblue (0, 0, 139) hotpink (255, 105, 180)

darkcyan (0, 139, 139) indianred (205, 92, 92)

darkgoldenrod (184, 134, 11) indigo (75, 0, 130)

darkgray (169, 169, 169) ivory (255, 255, 240)

darkgreen (0, 100, 0) khaki (240, 230, 140)

darkgrey (169, 169, 169) lavender (230, 230, 250)

darkkhaki (189, 183, 107) lavenderblush (255, 240, 245)

darkmagenta (139, 0, 139) lawngreen (124, 252, 0)

darkolivegreen (85, 107, 47) lemonchiffon (255, 250, 205)

darkorange (255, 140, 0) lightblue (173, 216, 230)

darkorchid (153, 50, 204) lightcoral (240, 128, 128)

darkred (139, 0, 0) lightcyan (224, 255, 255)

darksalmon (233, 150, 122) lightgoldenrodyellow (250, 250, 210)

darkseagreen (143, 188, 143) lightgray (211, 211, 211)

darkslateblue (72, 61, 139) lightgreen (144, 238, 144)

darkslategray (47, 79, 79) lightgrey (211, 211, 211)

-- ii --
© Oxford Brookes University 2001

Colour Name RGB Value Colour Name RGB Value

lightpink (255, 182, 193) paleturquoise (175, 238, 238)

lightsalmon (255, 160, 122) palevioletred (219, 112, 147)

lightseagreen (32, 178, 170) papayawhip (255, 239, 213)

lightskyblue (135, 206, 250) peachpuff (255, 218, 185)

lightslategray (119, 136, 153) peru (205, 133, 63)

lightslategrey (119, 136, 153) pink (255, 192, 203)

lightsteelblue (176, 196, 222) plum (221, 160, 221)

lightyellow (255, 255, 224) powderblue (176, 224, 230)

lime (0, 255, 0) purple (128, 0, 128)

limegreen (50, 205, 50) red (255, 0, 0)

linen (250, 240, 230) rosybrown (188, 143, 143)

magenta (255, 0, 255) royalblue (65, 105, 225)

maroon (128, 0, 0) saddlebrown (139, 69, 19)

mediumaquamarine (102, 205, 170) salmon (250, 128, 114)

mediumblue (0, 0, 205) sandybrown (244, 164, 96)

mediumorchid (186, 85, 211) seagreen (46, 139, 87)

mediumpurple (147, 112, 219) seashell (255, 245, 238)

mediumseagreen (60, 179, 113) sienna (160, 82, 45)

mediumslateblue (123, 104, 238) silver (192, 192, 192)

mediumspringgreen (0, 250, 154) skyblue (135, 206, 235)

mediumturquoise (72, 209, 204) slateblue (106, 90, 205)

mediumvioletred (199, 21, 133) slategray (112, 128, 144)

midnightblue (25, 25, 112) slategrey (112, 128, 144)

mintcream (245, 255, 250) snow (255, 250, 250)

mistyrose (255, 228, 225) springgreen (0, 255, 127)

moccasin (255, 228, 181) steelblue (70, 130, 180)

navajowhite (255, 222, 173) tan (210, 180, 140)

navy (0, 0, 128) teal (0, 128, 128)

oldlace (253, 245, 230) thistle (216, 191, 216)

olive (128, 128, 0) tomato (255, 99, 71)

olivedrab (107, 142, 35) turquoise (64, 224, 208)

orange (255, 165, 0) violet (238, 130, 238)

orangered (255, 69, 0) wheat (245, 222, 179)

orchid (218, 112, 214) white (255, 255, 255)

palegoldenrod (238, 232, 170) whitesmoke (245, 245, 245)

palegreen (152, 251, 152) yellow (255, 255, 0)

 yellowgreen (154, 205, 50)

-- iii --
© Oxford Brookes University 2001

B. SVG Elements and their Attributes

B.1 Attribute Value Types
The types of the attribute values in the following element tables are either listed as a set of
possible alternatives or the type of the value. The default value is in maroon.

Type Value

align
Possible values are:
none xMinYMin xMidYMin xMaxYMin xMinYMid xMidYMid xMaxYMid
xMinYMax xMidYMax xMaxYMax

bzlist
A list of four fraction values between 0 and 1, each set of four (x1, y1, x2,
y2) defines a pair of cubic Bezier control points for one interval.

clock
Clock value. Some examples are:
3s 4min 2.5h 100ms 6:45:33.2 45:33.2. If no units are specified, seconds
are assumed.

color A CSS colour value (for example, red, #F00, #FF0000, rgb(255,0,0)).

colorlist A list of colour values

coord Coordinate position in the current coordinate system. It will be transformed.

coordfr Value is either a coordinate (useSpaceOnUse) or a fraction of the bounding
box(objectBoundingBox) of the object to which the element is applied.

coordlist A list of coordinate positions possibly only one.

degree A rotation value in the clock-wise direction in degrees.

deglist A list of rotation values in the clock-wise direction in degrees.

evencoordlist A list of coordinate pairs.

fr A fraction between 0 and 1.

frlist A list of fraction values between 0 and 1.

idref
Reference to an id attribute such as xyz.begin in a time definition where
xyz is an id of another element.

legal Legal values for the attribute specified.

legallist List of legal values for the attribute specified.

length Length in the current coordinate system. It will be transformed.

meetOrSlice Possible values are: meet and slice.

mediatype media type as in RFC2045.

name Any legal identifier as in CSS.

num Any number, does not have a metric.

percent A per centage value between 0% and 100%.

text Any text string.

time

Some possible values are:
+[clock] -[clock]
[idref].begin + [clock]
[idref].begin - [clock]
[idref].end + [clock]
[idref].end - [clock]

timelist List of [time].

transformlist List of transformations (for example: scale(2) translate(100,100)).

url A legal URL.

-- iv --
© Oxford Brookes University 2001

B.2 SVG Elements Described in this Document
The table below gives a list of the elements in SVG described in this document. For each
element, both the attributes that have been described and those omitted are listed. The style
attributes are not listed here but have a separate table, see Section B.4. The attributes in bold
are the main or unique ones for the element. The complete set of xlink attributes are allowed
for simple links. For attributes that can have a set of values, the default value is shown in red
and bold

Element Attributes Comment

a
xmlns:xlink target
xlink:href etc

The a element
acts like a g
element so
most of those
attributes are
also allowed.

animate

attributeName=[legal] attributeType=[legal]
begin=[timelist] end=[timelist] dur=[[clock] | indefinite]
min=[clock] max=[clock]
restart=[always | never | whenNotActive]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
fill=[remove | freeze]
calcMode=[linear | discrete | paced | spline]
keyTimes=[frlist] keySplines=[bzlist]
from=[legal] to=[legal] by=[legal]
additive=[replace | sum]
accumulate=[none | sum]
onbegin onend onrepeat

keySplines list
is one less
than the
keyTimes list.

animateColor

begin=[timelist] end=[timelist]
dur=[[clock] | indefinite]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
fill=[freeze | remove]
from=[legal] to=[legal] by=[legal]
values=[colorlist]

animateMotion

begin=[timelist] end=[timelist] dur=[[clock] | indefinite]
min=[clock] max=[clock]
restart=[always | never | whenNotActive]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
calcMode=[linear | discrete | paced | spline]
keyTimes=[frlist] keySplines=[bzlist]
aditive=[replace | sum]
from=[[coord],[coord]] to=[[coord],[coord]] by=[[coord],
[coord]]
keyPoints=[frlist] path=[pathdata]
rotate=[[degree] | auto | auto-reverse]
values=[coordlist]

keySplines list
is one less
than the
keyTimes list.

animateTransform

begin=[timelist] end=[timelist] dur=[[clock] | indefinite]
min=[clock] max=[clock]
restart=[always | never | whenNotActive]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
calcMode=[linear | discrete | paced | spline]
keyTimes=[frlist] keySplines=[bzlist]
additive=[replace | sum]
from=[legal] to=[legal] by=[legal]
type=[translate | scale | rotate | skewX | skewY]
values=[legallist]

keySplines list
is one less
than the
keyTimes list.

-- v --
© Oxford Brookes University 2001

Element Attributes Comment

circle cx=[coord] cy=[coord] r=[length]
Draws circle with centre
and radius specified. r="0"
stops rendering.

clipPath
clipPathUnits=[objectBoundingBox |
userSpaceOnUse]

defs

Encloses elements not to
be displayed such as style
sheets and symbol
definitions. It can have all
the attributes of a g
element.

desc xmlns

Description of the
drawing. May have class
and style attributes. Could
contain XML fragment.

ellipse cx=[coord] cy=[coord] rx=[length] ry=[length]

Draws ellipse defined by
centre and two axes.
Either rx="0" or ry="0"
stops the rendering

g

All the styling attributes plus
id
requiredFeatures requiredExtensions
systemLanguage
xml:lang xml:space externalResourcesRequired
class style enable-background
flood-color flood-opacity
clip overflow transform
onfocusin etc

The g element can take
almost any attribute that
an element inside it can
have.

image

preserveAspectRatio=[align] [meetOrSlice]
x=[coord] y=[coord] width=[length] height=
[length]
xlink:href=[url]

line x1=[coord] y1=[coord] x2=[coord] y2=[coord]
Defines line between two
points. Default for all four
values is 0

linearGradient

x1=[coordfr] y1=[coordfr] x2=[coordfr] y2=
[coordfr]
gradientTransform=[transformlist]
gradientUnits=[objectBoundingBox |
userSpaceOnUse]
spreadMethod=[pad | reflect | repeat]
xlink:href=[url]

Defines a gradient to be
applied between (x1,y1)
and (x2,y2). If object is
larger than this line, pad
continues the end values
of the gradient outwards,
reflect reflects the
gradient and repeat
repeats it. The linked url
can be another gradient
whose values are
inherited by this one.

mask

height=[length] width=[length]
maskContentUnits=[objectBoundingBox |
userSpaceOnUse]
maskUnits=[objectBoundingBox |
userSpaceOnUse]
x=[coord] y=[coord]

-- vi --
© Oxford Brookes University 2001

Element Attributes Comment

path d=[pathdata] pathLength=[length]

Defines a path where author
gives estimate of pathLength.
Values dependent on path
length are scaled up to the
actual length, for example
offset of text on a path.

polygon points=[evencoordlist]

Equivalent to a path that does
moveto to first point and
absolute lineto to the other
points in sequence finishing
with a closepath command.

polyline points=[evencoordlist]

Equivalent to a path that does
moveto to first point and
absolute lineto to the other
points in sequence.

radialGradient

cx=[coordfr] cy=[coordfr]
fx=[coordfr] fy=[coordfr]
r= gradientTransform=[transformlist]
gradientUnits=[objectBoundingBox |
userSpaceOnUse]
spreadMethod=[pad | reflect | repeat]

rect
x=[coord] y=[coord]
width=[length] height=[length]
rx=[length] ry=[length]

x and y default to 0. rx,ry
define the radii that round the
corners of the rectangle.

script type=[mediatype]

set

begin=[timelist] end=[timelist]
dur=[[clock] | indefinite]
min=[clock] max=[clock]
restart=[always | never | whenNotActive]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
to=[legal]

stop offset=[[fr] | [percent]]
stop-color=[color] stop-opacity=[fr]

style
media=[comma separated list of media
descriptors] title=[text] type=[mediatype]

Usual to have the style sheet
at the top of the document and
surrounded by a defs element.

svg

contentScriptType="text/ecamscript"
contentStyleType="text/css"
x=[coord] y=[coord]
height=[length] width=[length]
preserveAspectRatio=[align] [meetOrSlice]
xmlns=[resource]
zoomAndPan=[magnify | disable | zoom]
overflow=[visible | hidden | scroll | auto |
inherit]

The default media type are
given as examples for
contentScriptType and
contentStyleType.

-- vii --
© Oxford Brookes University 2001

Element Attributes Comment

switch

requireFeatures=[org.w3c.svg.static |
org.w3c.svg.dynamic | org.w3c.dom.svg |
org.w3c.svg.lang | org.w3c.svg.animation
etc]
systemLanguage=[comma separated list
of languages such as en]

symbol

All the presentation attributes
preserveAspectRatio=[align]
[meetOrSlice]
viewBox=[coord] [coord] [length] [length]

Symbol is a container element
for a set of graphics elements
including use elements.

text

dx=[lengthlist] dy=[lengthlist]
x=[coordlist] y=[coordlist]
lengthAdjust=[spacing | spacingAndGlyphs]
rotate=[degree] textLength=[length]
transform=[transformlist]

Draws text with origin of text
string or origin of individual
characters defined by (x,y)
offset by (dx,dy). Additional
rotation can be specified for the
text string or individual
characters. The expected
length of the text can be
defined. If actual length is
different, lengthAdjust decides
whether it gets padded by just
varying the spacing.

textPath

lengthAdjust=[spacing |
spacingAndGlyphs]
method=[align | stretch] spacing=[auto |
exact]
startOffset=[length] textLength=[length]

title Normally none

Title for document or element.
Wise to only have one per
element or document as
browser may only look for first.

tref

dx=[lengthlist] dy=[lengthlist]
x=[coordlist] y=[coordlist]
lengthAdjust=[spacing | spacingAndGlyphs]
rotate=[deglist] textLength=[length]
xlink:href=[url]

Similar to tspan but text to be
drawn is pointed at by the url
rather than enclosed by the
element as in tspan.

tspan

dx=[lengthlist] dy=[lengthlist]
x=[coordlist] y=[coordlist]
lengthAdjust=[spacing | spacingAndGlyphs]
rotate=[deglist] textLength=[length]

Draws a substring within a text
element with origin of substring
or origin of individual characters
characters defined by (x,y)
offset by (dx,dy). Additional
rotation can be specified and
the expected length of the
substring. If actual length is
different, lengthAdjust decides
whether it gets padded by just
varying the spacing.

use

All the presentation attributes
height=[length] width=[length] x=[coord] y=
[coord]
xlink:href=[url]

The use element can point
either to a symbol, SVG
document or a group. The use
is effectively replaced by a
group.

-- viii --
© Oxford Brookes University 2001

B.3 SVG Global Attributes
The table below gives a list of the attributes in SVG that can be used by most drawing
elements etc.

B.4 SVG Style Properties and Attributes
The table below gives a list of the style properties in SVG that can also be used as style
attributes.

Attribute Possible Values Comment

id =[name] The name must be unique in
the document.

class =[name]
The name is used to style sub
classes of a set of drawing
elements in their own way.

style
Style attribute as in CSS. List of
styling declarations separated
by semicolons.

Attribute Possible Values Comment

alignment-
baseline

=[auto | baseline | before-edge | text -before -
edge | middle | after-edge | text -after-edge |
ideographic | alphabetic | hanging |
mathematical | inherit]

baseline-shift =[baseline | sub | super | [percent] | [length] |
inherit]

clip =[[shape] | auto | inherit]

clip-path =[[url] | none | inherit]
References the clipPath
element that defines the
clipping.

clip-rule =[nonzero | evenodd | inherit] Same as for fill-rule.

color =[[color] | inherit]

CSS colour, better to use
fill and stroke properties
unless you need a
common style across the
SVG document and the
page in which it is
embedded.

color-
interpolation

color-rendering
=[auto | optimizeSpeed | optimizeQuality |
inherit]

direction =[ltr | rtl | inherit]
Defines the base writing
direction of the text.

dominant-
baseline

=[auto | use-script | no-change | reset-size |
ideographic | alphabetic | hanging |
mathematical | inherit]

fill =[none | [color] | [url]] The url points to a patten
or gradient definition.

fill-opacity =[fr] Initial value is 1.

fill-rule =[nonzero | evenodd | inherit]

font-family =[list of generic or font names as in CSS] See CSS.

font-size =[[length] | larger | smaller | [percent] |
inherit]

See CSS.

-- ix --
© Oxford Brookes University 2001

Attribute Possible Values Comment

font-size-
adjust

=[[num] | none | inherit]

Adjusts the font size to retain
legibility. The number defines
the required aspect ratio (for
example, 0.58 for Verdana). If
another font is used instead (for
example, Times New Roman
with an aspect ratio of 0.46, the
font is scaled up in size by
0.58/0.46.

font-stretch

=[normal |wider | narrower | ultra-condensed
| extra-condensed | condensed | semi-
condensed | semi-expanded | expanded |
extra-expanded | ultra-expanded | inherit]

font-style =[normal | italic | oblique | inherit]

font-variant =[normal | small-caps | inherit]

font-weight
=[normal | bold | bolder | lighter | 100 | 200 !
300 | 400 | 500 | 600 | 700 | 800 | 900 |
inherit]

glyph-
orientaion-
vertical

=[auto | [degree] | inherit]
Top-down Latin text will be
orientated 90 degrees unless
this is set to 0.

glyph-
orientation-
horizontal

=[[degree] | inherit] Default value is 0. Allowed
values are 0, 90, 180, and 270.

kerning =[auto | [length] | inherit] kerning length is added to the
inter-character spacing.

letter-
spacing

=[normal | [length] | inherit]

mask =[[url] | none | inherit] Defines the mask element to
be used for masking.

onclick,
onload etc

Script function call

opacity =[[fr] | inherit] Initial value is 1.

shape-
rendering

=[auto | optimizeSpeed | crispEdges |
geometricPrecision | inherit]

A hint as to how to render the
SVG document.

stroke =[none | [color] | [url]]
The url points to a patten or
gradient definition.

stroke-
dasharrary =[[length],[length],[length],[length], ...]

A list of lengths that should be
even giving the dash and space
lengths in order. If an odd
number is specified, the list is
repeated to make it even.

stroke-
dashoffset

=[[length] | none] Initial value is 0.

stroke-
linecap

= [butt | round | square | inherit] Defined for the end of paths
and lines.

-- x --
© Oxford Brookes University 2001

B.5 Filtering Elements
SVG has a range of image filtering operations that can be performed on the vector graphics
image generated before it is displayed. These have not been described in this document.

Attribute Possible Values Comment

stroke-
linejoin = [miter | round | bevel | inherit]

Specifies the shape to be used
at the corners of paths and
polylines.

stroke-
miterlimit =[[num] | inherit]

Initial value is 4. Limits the ratio
of the miter length to the width
of the lines joined by a miter.

stroke-
opacity

=[fr] Initial value is 1.

stroke-width =[[length] | inherit] Initial value is 1.

text-anchor =[start | middle | end | inherit]
Starting position of the text
string.

text-
decoration

=[none | underline | overline | line-through |
blink | inherit] See CSS.

text-
rendering

=[auto | optimizeSpeed | optimizeLegibility |
geometricPrecision | inherit]

Allows renderer to make
decisions on whether to anti-
alias or use font hinting.

transform

unicode-bidi =[normal | embed | bidi-override | inherit] See CSS for meaning.

visibility =[visible | hidden | collapse | inherit]

word-
spacing

=[normal | [length] | inherit]

writing-mode =[lr-tb | rl-tb | tb-rl | lr | rl | tb | inherit]

Element Attributes Comment

definition-src

feBlend in2 mode=[normal | multiply | screen |
darken | lighten]

feColorMatrix type=[matrix | saturate | hueRotate |
luminanceToAlpha] values

feComponentTransfer

feComposite in2 k1 k2 k3 k4 operator=[over | in | out |
atop | xor | arithmetic]

feConvolveMatrix
bias divisor edgeMode kernelMatrix
kernelUnitLength order preserveAlpha
targetX targetY

feDiffuseLighting diffuseConstant surfaceScale

feDisplacementMap
in2 scale
xChannelSelector=[R | G | B | A]
yChannelSelector=[R | G | B | A]

feDistantLight azimuth elevation

-- xi --
© Oxford Brookes University 2001

Element Attributes Comment

feFlood

feFuncA

feFuncB

feFuncG

feFuncR

feGaussianBlur stdDeviation

feImage

feMerge

feMergeNode in out

feMorphology operator=[erode | dilate] radius

feOffset dx dy

fePointLight x y z

feSpecularLighting
specularConstant specularExponent
surfaceScale

feSpotLight
limitingConeAngle pointsAtX pointsAtY
pointsAtZ x y z

feTile

feTurbulence
baseFrequency numOctaves seed
stitchTiles=[stitch | noStitch]
type=[fractalNoise | turbulence]

filter

animate feColorMatrix feComposite
feGaussianBlur
feMorphology feTile filterRes
filterUnits=[objectBoundingBox |
userSpaceOnUse]
height width
primitiveUnits=[objectBoundingBox |
userSpaceOnUse] x y

-- xii --
© Oxford Brookes University 2001

B.6 Font Elements
SVG has a range of font and glyph definitional facilities that have not been described in this
document.

Element Attributes Comment

altGlyph dx dy format glyphRef rotate=[degree]

altGlyphDef

altGlyphItem

font horiz -adv-x horiz -origin-x horiz -origin-y vert-
adv-y vert-origin-x vert-origin-y

font-face

accent-height ascent bbox cap-height
descent font-stretch font-style font-variant
font-weight hanging ideographic
mathematical overline-position overline-
thickness panose-1 slope stemh stemv
strikethrough-position strikethrough-thickness
underline-position underline-thickness
unicode-range units-per-em v -alphabetic
widths x-height

font-face-
format

font-face-
name

font-face-src

font-face-uri

glyph
arabic-form d glyph-name horiz-adv-x lang
orientation unicode vert-adv-y vert-origin-x
vert-origin-y

glyphRef dx dy format glyphRef

hkern g1 g2 k u1 u2

missing-
glyph

d horiz-adv-x vert-adv-y vert-origin-x vert-
origin-y

vkern g1 g2 k u1 u2

-- xiii --
© Oxford Brookes University 2001

B.7 Other Elements
SVG has some other more specific elements that have not been described in this document.

Element Attributes Comment

color-profile
local name rendering-intent=[auto |
perceptual | relative-colorimetric | saturation |
absolute -colorimetric]

cursor x y

definition-src

foreignObject x y

marker

markerHeight=[length] markerWidth=
[length]
markerUnits=[strokeWidth |
userSpaceOnUse]
orient=[auto | [degree]]
preserveAspectRatio=[align]
[meetOrSlice]
refX=[coord] refY=[coord]
viewBox=[coord] [coord] [length] [length]

Defines a marker where
(refX,refY) is the reference
point of the marker. If attribute
orient is set to auto, the
marker is oriented in the
current direction of the path (for
example an arrow head).

metadata

mpath
xmlns:xlink etc
xlink:href
externalResourcesRequired=[false | true]

Sub-element used by
animateMotion to define a path
instead of its path attribute.

pattern

patternContentUnits=[objectBoundingBox
| userSpaceOnUse]
patternTransform=[transformlist]
patternUnits=[objectBoundingBox |
userSpaceOnUse]
preserveAspectRatio=[align]
[meetOrSlice]
viewBox=[coord] [coord] [length] [length]
x=[coord] y=[coord] width=[length]
height=[length]

switch

requireFeatures=[org.w3c.svg.static |
org.w3c.svg.dynamic | org.w3c.dom.svg |
org.w3c.svg.lang | org.w3c.svg.animation
etc]
systemLanguage=[comma separated list
of languages such as en]

view

preserveAspectRatio=[align] [meetOrSlice]
viewBox=[coord] [coord] [length] [length]
viewTarget zoomAndPan=[disable | magnify
| zoom]

-- xiv --
© Oxford Brookes University 2001

C. References

The main reference is the W3C site from which most other references are accessible.

URL Comment

http://www.w3.org/Graphics/SVG/ Overview of SVG Activity

http://www.w3.org/Graphics/SVG/Group/ SVG Working Group Home
Page

http://www.w3.org/TR/SVG/ Latest Version of the SVG
Document

http://www.adobe.com/svg/
Adobe SVG Plug-in plus
tutorial information and
demonstrations

http://sis.cmis.csiro.au/svg/
CSIRO SVG Tool Kit. Can
display SVGs and convert
SVGs to JPEG.

http://www.alphaworks.ibm.com/tech/svgview IBM SVG Viewer

http://xml.apache.org/batik/ Apache's Batik which derives
from Jackaroo

http://www.jasc.com/webdraw.asp Jasc WebDraw SVG Editor

http://www.mayura.com/ Mayura Draw Editor

http://www.levien.com/svg/
Gill: Gnome Illustration
Application

http://www.digapp.com/newpages/svg2pdf.html Converts SVGs to PDF

http://www.padc.mmpc.is.tsukuba.ac.jp/member/morik/fdssvg/ Converts bitmap images to
SVG

http://broadway.cs.nott.ac.uk/projects/SVG/svgpl/
SVG-PL, a Perl library for
creating legal SVG
documents

http://www.w3.org/Graphics/SVG/Test/ SVG Conformance Test Suite

http://www.savagesoftware.com/products/svgtoolkit.html Savage Software SVG Toolkit

http://www.square1.nl/index.htm Graphics Connection
Conversion Tools

http://www.celinea.com/ CR2V, Raster to Vector
Converter

http://www.graphicservlets.com/wmf2svg.htm WMF to SVG Converter

