
XML Primer

© Oxford Brookes University 2002

Contents

l 1. Introduction
¡ 1.1 History
¡ 1.2 What is Wrong with HTML
¡ 1.3 Why not SGML
¡ 1.4 XML History
¡ 1.5 A Family of Standards

l 2. XML 1.0
¡ 2.1 Role of XML
¡ 2.2 Tags, Elements and Attributes
¡ 2.3 Well-Formed Documents
¡ 2.4 XML Structure
¡ 2.5 References
¡ 2.6 Valid XML

l 3. XML Examples
¡ 3.1 Book Example
¡ 3.2 Design Issues
¡ 3.3 Extending the Book Example
¡ 3.4 A Staff Directory
¡ 3.5 CD Collection
¡ 3.6 SVG

l 4. XML Styling
¡ 4.1 Styling XML
¡ 4.2 CSS
¡ 4.3 Display Property

l 5. XML Namespaces
¡ 5.1 Introduction
¡ 5.2 Student Example
¡ 5.3 Book Example

l 6. A Bibliography of Different Types of Documents
¡ 6.1 Introduction
¡ 6.2 Books
¡ 6.3 Standards
¡ 6.4 Masters Theses
¡ 6.5 Reports

Appendices

l A. References
l B. XML Activity Statement
l C. XML, Java, and the future of the Web
l D. XQuick Reference Guide

-- 1 --
© Oxford Brookes University 2002

1. Introduction

l 1.1 History
l 1.2 What is Wrong with HTML
l 1.3 Why not SGML
l 1.4 XML History
l 1.5 A Family of Standards

1.1 History
In 1969, Charles Goldfarb of IBM with Edward Mosher and Raymond Lorie defined the Generalized Markup
Language: GML (or Goldfarb, Mosher and Lorrie). This was one of the first systems that provided generic
markup; it allowed you to define your own markup terms and had a validating parser (the user could say what
markup was allowed where). By 1973, IBM had an implementation of GML as part of its Advanced Text
Management System.
In 1978, Goldfarb led a project to produce an American standard text description language based on GML.
This became SGML (Standard Generalized Markup Language) and was moved to ISO to become an
international standard. It finally became an ISO standard in 1986.
SGML provided all the mechanisms to define a markup language for a particular purpose. It did not constrain
the tags that could be used to markup the text nor did it constrain what symbols would be used for the
opening start-tag, opening end-tag, closing start-tag and closing end-tag delimiters.
SGML also defined a Document Type Definition which accompanies the document and defines the
structure of tags that are allowed. ISO defined a separate standard called DSSL, the Document Style
Semantics and Specification Language which described the presentation formatting required by the
document's author.
SGML was widely used at CERN for documentation starting as early as 1984. CERN documents were
defined in the CERN SGML GUID language. When Tim Berners-Lee defined HTML for the Web, he had
been an SGML GUID user for a number of years.
The current move is away from HTML and towards application-specific markup using XML (Extensible
Markup Language). XML derives from SGML. This means that a reformulation of HTML as an application of
XML makes a great deal of sense. The facilities available in SGML and the tools surrounding SGML become
available.
XML is a subset of SGML with the goal of allowing SGML documents to be served, received, and processed
on the Web in the way that is now possible with HTML. XML was initially developed by the W3C SGML
Working Group chaired by Jon Bosak of Sun Microsystems. XML is primarily aimed at the requirements of
large-scale Web content providers for industry-specific markup, vendor-neutral data exchange,
media-independent publishing, one-on-one marketing, workflow management in collaborative
authoring environments, and the processing of Web documents by intelligent clients. Valid XML
documents were designed to be valid SGML documents also.
The main participants in the devlopment of XML early on were Jon Bosak, Tim Bray, James Clark, Dan
Connolly, Steve DeRose, Dave Hollander, Eliot Kimber, Tom Magliery, Eve Maler, Jean Paoli, Peter Sharpe
and C. Michael Sperberg-McQueen. Several of these are still active in XML developments.

1.2 What is Wrong with HTML
SGML allowed documents to describe their own grammar, the elements, their attributes and the structural
relationships that exist between these. On the other hand, HTML has a small set of defined elements. This
makes life easy but at the cost of limiting HTML in terms of:

l Extensibility: Users cannot define their own elements or attributes
l Deep Structure: Highly structured documents can only be produced by embedding lists inside lists

inside lists or the same with tables
l Validity: HTML is sufficiently lax that it is difficult to define an invalid or valid document

-- 2 --
© Oxford Brookes University 2002

So three major features of XML are:

l Users can define new elements and attribute names as required
l Document structures can be nested to any depth or complexity
l An XML document may contain a description of its grammar so that applications can perform

structural validation

Some applications requiring these facilities are:

l Documents which are not simple text documents
l Extraction of information from databases
l Client-side processing
l Applications requiring different presentations of the same data

So the answer to the question is that there is nothing wrong with HTML for the task that it is addressing. That
is the production by a large community of mainly textual documents for viewing on the Web. It comes unstuck
when it goes outside that domain. For example, I wish to send a student's answers to an exam paper to a
colleague for marking and I want to do this via the Web. My markup might be:

<html>
<head>
<title> Fred Smith's P08770 Paper </title>
</head>
<body>
<h1>Who invented the Web? </h1>
<p>Tim Berners-Lee</p>
<h1>What year was the Web invented? </h1>
<p>1989</p>
</body>
</html>

There are no elements defined for marking up exam papers, a question and answer pair, a question or an
answer. I have to use the HTML markup for a purpose that it was not intended. I choose h2 as the markup
for question and p as the markup for answer. I need to tell my colleague what the markup translation is.
There are no constraints imposed by HTML in ensuring that every question has an answer and that a
question does not have two answers. Such constraints are beyond HTML.

1.3 Why not SGML
The major problem with SGML is age. It was developed in an era of punched cards and the need to keep
keystroke input to a minimum. In consequence it suffers some of the lack of clarity that exists with HTML.
To a large extent, XML is what SGML would have been if it had been defined when XML was needed. XML
is a subset of SGML that retains all the major features and removes some of the laxness of SGML and some
of the richer features primarily defined for the large scale documentation area.

1.4 XML History
The first Working Draft of XML appeared in November 1996 but attracted less attention than the new Java
language that was gaining all the headlines at the time. Java had been announced in the Spring of 1995 and
by the Autumn of 1995 it was the hot topic at WWW4 in Boston.
XML 1.0 was first announced to a wide audience at the WWW6 Conference in Santa Clara in April 1997.
Incidentally, this was also the launch of the Accessibility Initiative within W3C. Accessibility and XML are of a
similar age. Appendix C gives Jon Bosak's paper that was presented at the WWW6 Workshop on XML and
gives a good overview of the thinking at that time.
The Working Draft presented at Santa Clara became a W3C standard in February 1998, under a year from
the original presentation to a wide audience.
The second significant event was the publication of the XML Namespaces standard in January 1999.

1.5 A Family of Standards
XML is not a single standard. The core XML 1.0 syntactic defintion is enhanced by the following standards
that are either complete or under development:

-- 3 --
© Oxford Brookes University 2002

Recommendations
XML 1.0: February 1998 (Revised October 2000)
XML Namespaces: January 1999

XSLT: November 1999 (part of XSL)
XPath: November 1999 (used by XSLT and XPointer)
XHTML (HTML redefined as XML): January 2000
XHTML Basic: December 2000 (Base subset)
Canonical XML: March 2001
XML Schemas Parts 1 and 2: May 2001

XLink and XBase: June 2001
XSL: October 2001
XML Information Set: October 2001
XML-Signature: February 2002

Proposed Recommendations
Exclusive XML Canonicalization: May 2002

Candidate Recommendations
XML Fragment Interchange: February 2001
XPointer: September 2001
XInclude: February 2002
XML Signature Decryption: March 2002
XML Encryption: March 2002

Working Drafts
XML Events: October 2001
XML Protocol: December 2001
XForms 1.0: January 2002
XML Key Management: March 2002
XKMS: March 2002
XPath 2.0: April 2002
XQuery: Arpil 2002
XML 1.1: April 2002

-- 4 --
© Oxford Brookes University 2002

2. XML 1.0

l 2.1 Role of XML
l 2.2 Tags, Elements and Attributes
l 2.3 Well-Formed Documents
l 2.4 XML Structure
l 2.5 References
l 2.6 Valid XML

2.1 Role of XML
Early on W3C produced a document giving the seven main reasons for XML:

1. XML is a method for putting structured data in a text file
For "structured data" think of such things as spreadsheets, address books, configuration parameters,
financial transactions, technical drawings, etc. Programs that produce such data often also store it on disk,
for which they can use either a binary format or a text format. The latter allows you, if necessary, to look at
the data without the program that produced it. XML is a set of rules, guidelines, conventions, whatever you
want to call them, for designing text formats for such data, in a way that produces files that are easy to
generate and read (by a computer), that are unambiguous, and that avoid common pitfalls, such as lack of
extensibility, lack of support for internationalization/localization, and platform-dependency.

2. XML looks a bit like HTML but isn't HTML
Like HTML, XML makes use of tags (words bracketed by '<' and '>') and attributes (of the form
name="value"), but while HTML specifies what each tag & attribute means (and often how the text
between them will look in a browser), XML uses the tags only to delimit pieces of data, and leaves the
interpretation of the data completely to the application that reads it. In other words, if you see "<p>" in an
XML file, don't assume it is a paragraph. Depending on the context, it may be a price, a parameter, a person,
a p... (b.t.w., who says it has to be a word with a "p"?)

3. XML is text, but isn't meant to be read
XML files are text files, as I said above, but even less than HTML are they meant to be read by humans.
They are text files, because that allows experts (such as programmers) to more easily debug applications,
and in emergencies, they can use a simple text editor to fix a broken XML file. But the rules for XML files are
much stricter than for HTML. A forgotten tag, or an attribute without quotes makes the file unusable, while in
HTML such practice is often explicitly allowed, or at least tolerated. It is written in the official XML
specification: applications are not allowed to try to second-guess the creator of a broken XML file; if the file is
broken, an application has to stop right there and issue an error.

4. XML is a family of technologies
There is XML 1.0, the specification that defines what "tags" and "attributes" are, but around XML 1.0, there is
a growing set of optional modules that provide sets of tags & attributes, or guidelines for specific tasks. There
is, e.g.,Xlink (still in development as of November 1999), which describes a standard way to add hyperlinks
to an XML file. XPointer & XFragments (also still being developed) are syntaxes for pointing to parts of an
XML document. (An XPointer is a bit like a URL, but instead of pointing to documents on the Web, it points to
pieces of data inside an XML file.) CSS, the style sheet language, is applicable to XML as it is to HTML. XSL
(autumn 1999) is the advanced language for expressing style sheets. It is based on XSLT, a transformation
language that is often useful outside XSL as well, for rearranging, adding or deleting tags & attributes. The
DOM is a standard set of function calls for manipulating XML (and HTML) files from a programming
language. XML Namespaces is a specification that describes how you can associate a URL with every single
tag and attribute in an XML document. What that URL is used for is up to the application that reads the URL,
though. RDF, W3C's standard for metadata, uses it to link every piece of metadata to a file defining the type
of that data.) XML Schemas 1 and 2 help developers to precisely define their own XML-based formats. There
are several more modules and tools available or under development. Keep an eye on W3C's technical
reports page.

-- 5 --
© Oxford Brookes University 2002

5. XML is verbose, but that is not a problem
Since XML is a text format, and it uses tags to delimit the data, XML files are nearly always larger than
comparable binary formats. That was a conscious decision by the XML developers. The advantages of a text
format are evident (see 3 above), and the disadvantages can usually be compensated at a different level.
Disk space isn't as expensive anymore as it used to be, and programs like zip and gzip can compress files
very well and very fast. Those programs are available for nearly all platforms (and are usually free). In
addition, communication protocols such as modem protocols and HTTP/1.1 (the core protocol of the Web)
can compress data on the fly, thus saving bandwidth as effectively as a binary format.

6. XML is new, but not that new
Development of XML started in 1996 and it is a W3C standard since February 1998, which may make you
suspect that this is rather immature technology. But in fact the technology isn't very new. Before XML there
was SGML, developed in the early '80s, an ISO standard since 1986, and widely used for large
documentation projects. And of course HTML, whose development started in 1990. The designers of XML
simply took the best parts of SGML, guided by the experience with HTML, and produced something that is no
less powerful than SGML, but vastly more regular and simpler to use. Some evolutions, however, are hard to
distinguish from revolutions... And it must be said that while SGML is mostly used for technical
documentation and much less for other kinds of data, with XML it is exactly the opposite.

7. XML is license-free, platform-independent and well-supported
By choosing XML as the basis for some project, you buy into a large and growing community of tools (one of
which may already do what you need!) and engineers experienced in the technology. Opting for XML is a bit
like choosing SQL for databases: you still have to build your own database and your own
programs/procedures that manipulate it, but there are many tools available and many people that can help
you. And since XML, as a W3C technology, is license-free, you can build your own software around it without
paying anybody anything. The large and growing support means that you are also not tied to a single vendor.
XML is not always the best solution, but it is always worth considering.

Figure 2.1: Document Structure

-- 6 --
© Oxford Brookes University 2002

2.2 Tags, Elements and Attributes
Figure 2.1 shows a very simple document and a diagram indicating how it could be marked up to indicate the
three major parts of the document that define its structure of title, thought and author. Mark-up shows off
that strucure. When the document is presented, the structure will normally be shown by the use oof different
style as is shown in the Figure.
Figure 2.2 shows the role of XML. Its function is just concerned with marking up the document and indicating
its structure. The function of presenting the structure is delegated to either Cascading Style Sheets (CSS) or
the Extensible Styling Language (XSL).

Figure 2.2: Styling a Doxument

XML marks up information using a start-tag and an end-tag to delimit the bounds of an element. A start-tag
consists of:

l Left angle bracket (<)
l The tag name (title, say)
l It may have one or more attributes (id="3")
l Right angle bracket (>)

An example of a start-tag is:

<title>

An end-tag consists of:

l Left angle bracket (<)
l A slash (/)
l The tag name (title)
l Right angle bracket (>)

-- 7 --
© Oxford Brookes University 2002

An example of an end-tag is:

</title>

An element consists of:

l A start-tag
l The element's content which consists of text and other elements
l The matching end-tag
l Element names are case sensitive in XML

Some example elements are:

<title>The title of your document</title>

<Author><surname>Hopgood</surname><firstname>Bob</firstname></Author>

<PARA>This is a <emphasis>large</emphasis> book</PARA>

<rule></rule>

<ramble>This
has additional spacing
 and newlines scattered
in the text</ramble>

With each element, it is possible to associate attributes. Attributes are used to qualify the meaning of an
element. They appear within the start-tag. The form of an attribute is name followed by = followed by value
in quotes. Both double quotes (") and single quotes (') may be used but they must be a pair. For example:

<title name="CBE'>

is not allowed. Attributes are separated by spaces:

<title name="CBE" list="civil">

Attributes can only appear once. The following is not allowed:

<title name="CBE" name="civil">

Looking back at our original thought, a possible markup that brings out its structure would be:

<?xml version="1.0"?>
<thought>
 <title>A Thought</title>
 <body>
 All those things for which
 we have no words are lost
 </body>
 <author>Annie Dillard</author>
</thought>

-- 8 --
© Oxford Brookes University 2002

The elements thought, title, body and author have been defined. If it appears, the XML declaration must
start an XML document but it is optional. The characters xml must be lower case. A document contains a
single tag pair that defines the root element. In this example the root element is the thought element
All tag and attribute names must start with an alphabetic character, an underscore (_) or acolon (:). The
name must not contain any whitespace, that is characters like space, tab, line feed, carriage return etc.
Punctuation characters are allowed in names. The colon character is used just to define the namespace
(which will be discussed later). Names cannot start with xml, xML, xmL, XmL, or any other
combination.Finally, names in XML are case sensitive. So <exam>, <ExaM>, <EXAM> are all different tags.

2.3 Well-Formed Documents
A well-formed XML document:

l Has a single root element
l All other elements are correctly nested

If the XML document is not well formed, programs using it must report an error. Well-formed documents can
be parsed by a client application without any external resources being required.
Documents may also be defined as valid which means that they:

l Abide by the constraints placed on each element's position in the document
l Abide by the constaints placed on the attributes of each element
l Require a Document Type Definition or XML Schema to specify the constraints

There is good support for XML in IE6.0. It contains both an unvalidating and validating parser (validity
defined by a DTD). Any file opened by IE6 of type xxx.xml will have the IE6.0 parser check that it is well-
formed and, if it succeeds IE will display a tree structure for the document. If it is not well formed, IE will give
an error message.
The main advantage that come with an XML application is that elements can be structured in a way to suit
the application. It is no longer necessary to try and fit the document to the elements available in HTML.

2.4 XML Structure
An XML document consists of a Prologue followed by the root element. There are also some
miscellaneous information that can appear practically anywhere. The two main parts of the Prologue are:

l XML declaration: <?xml version="1.0"?>
l Document Type Declaration: <!DOCTYPE . . .>

Miscellaneous information can appear between the two and after the second. Miscellaneous information
consists of any of these three:

l Comment
l Processing Instruction
l White Space characters (space, carriage return, line feed, tab)

The root element can, of course, include other elements as part of its content to any depth or complexity that
the application requires.

-- 9 --
© Oxford Brookes University 2002

Processing Instructions (PIs)
Processing Instructions are not part of the character data of the XML document itself. They each contain an
instruction to the parser. The XML Declaration is a special kind of PI that defines the version of XML to be
parsed against. The general form of a PI is:

<?ApplicationName InstructionsForTheApplication ?>

Comments
Comments in XML are surrounded by <!-- and -->. Two hypens together are not allowed in the comment
itself. For example:

<!--This is a comment-->
<!--This is -- not a -- comment-->

Contents of an XML Element
An XML element can consist of just the empty-element tag or a start-tag followed by content followed by
end-tag. The content can be a mixture of:

l character data
l element
l Processing Instruction
l Comment
l CDATA Section
l Reference

Character data are any characters other than < and &. A CDATA Section is a way of enclosing character
data so that it can include characters like < and &. To allow special characters such as these two to appear
outside a CDATA Section, XML has the concept of a reference (entity and character) which starts with an &
character (which is why that character is not allowed in character data). These will be discussed later.

CDATA Section
Sometimes there is a need to pass a string of characters to an application without parsing them. XML has the
reserved characters < and & for example. The following markup is therefore illegal:

<answer>27 when x < 3 </answer>

The correct way is to put the string not to be parsed in a CDATA section:

<answer><![CDATA[27 when x < 3]]> </answer>

CDATA Sections are mainly used when the text contains a large and unknown number of reserved
characters. For example, a binary encoded image might contain any number of them and they would be
difficult to find and would probably invalidate the image even if they were substituted. The only string not
allowed in a CDATA section is]]>.

-- 10 --
© Oxford Brookes University 2002

2.5 References
Entity References
Entity references are a way of forcing the parser to replace the entity reference with some other data. It
allows reserved or special characters to be used in a document. Entity references start with an & and
terminate with a ;. Two symbols are reserved and must be escaped when used elsewhere: & and <. The
symbol > is escaped also for compatibility with SGML although it does not need to be escaped in XML. Two
symbols that may be escaped are single-quote and double-quote. The set of Built-in Entity References
are:

Others may be declared in a DTD.

Character References
XML defines the characters available for text as a subset of ISO/IEC 10646 (Unicode) supporting UTF-8 and
UTF-16 encoding. Character references allow you to specify an ISO/IEC 10646 character code. A character
reference is preceded by:

l &# if specified in decimal
l &#x if specified in hexadecimal

It is terminated by ; as for entity references. Here are some example character references:

l £ is the same as £
l £ is the same as £
l < is the same as <
l < is the same as <
l & is the same as &
l & is the same as &

This does give an alternative way of writing the reserved characters.

Signalling the Character set in Use
An XML Processor is required to read UTF-8 and UTF-16 encodings. UTF stands for UCS Transformation
Format. UCS stands forUniversal Character set. UTF-8 is a variable length encoding of Unicode using 1 to
4 bytes per character.The ACSII set of characters are each a single byte. Most non-ideographics are defined
in 2 bytes. UTF-16 uses 2 bytes minimum per character.
Other encodings may be used by XML in which case the XML declaration at the head of the file is required.
For example:

<?xml version="1.0" encoding="iso-8859-1" ?>

ISO-8859 is the old ECMA standard and is a subset of Unicode. ISO-8859-1 (Latin 1) covers all the
characters used in the Western European Languages apart from the euro sign! Microsoft Windows supports
Latin-1 plus some extensions including the euro.

Character Reference Comment

< < Must

> > Compatibility with SGML

& & Must

' ' May (IE does not)

" " May

-- 11 --
© Oxford Brookes University 2002

Discovering the Character Set in Use
The XML encoding declaration may be:

<?xml version="1.0" ?>

The first four characters can give a good clue as to the encoding being used. In consequence, XML
Processors are likely to sniff the declaration to try and deduce the character codes in use if not stated
explicitly.

2.6 Valid XML
All XML processors must check for well-formed XML. Validating XML requires a Document Type Definition
and/or an XML Schema Declaration. A valdating XML parser will use this to detect errors in usage. Validated
XML will be discussed as part of Document type Defnitions.

-- 12 --
© Oxford Brookes University 2002

3. XML Examples

l 3.1 Book Example
l 3.2 Design Issues
l 3.3 Extending the Book Example
l 3.4 A Staff Directory
l 3.5 CD Collection
l 3.6 SVG

3.1 Book Example
A good way to get started with XML is to consider a few examples. Let us suppose that we wish to catalogue
our book collection. Let us consider a set of books on XML that might be marked up as follows:

<books>
 <book>
 <title>XML IE5</title>
 <author>Alex Homer</author>
 <price>27.49</price>
 </book>
 <book>
 <title>XML Design and Implementation</title>
 <author>Paul Spencer</author>
 <price>36.99</price>
 </book>
 <book>
 <title>XML in Action</title>
 <author>William J. Pardi</author>
 <price>37.49</price>
 </book>
 <book>
 <title>XML: A Primer</title>
 <author>Simon St. Laurent</author>
 <price>23.99</price>
 </book>
 <book>
 <title>XSLT & XPath</title>
 <author>John Robert Gardner and Zarella L. Rendon</author>
 <price>45.99</price>
 </book>
 <book>
 <title>The XML Companion</title>
 <author>Neil Bradley</author>
 <price>24.95</price>
 </book>
</books>

Parsing the XML would generate a tree similar to the one in Figure 3.1.

-- 13 --
© Oxford Brookes University 2002

Figure 3.1: Block level and Inline Elements

In the example, the choice has been made to define each piece of information as a separate element. An
alternative approach would have been:

<books>
 <book title="XML IE5" author="Alex Homer" price="27.49" />
 <book title="XML Design and Implementation" author="Paul Spencer"
price="36.99" />
 <book title="XML in Action" author="William J. Pardi" price="37.49" />
 <book title="XML: A Primer" author="Simon St. Laurent" price="23.99" />
 <book title="XSLT & XPath" author="John Robert Gardner and Zarella L.
Rendon" price="45.99" />
 <book title="The XML Companion" author="Neil Bradley" price="24.95" />
</books>

The question is which is the best approach or should it be a mixture of the two?

3.2 Design Issues
Using elements raises the following questions:

l Multiple authors are not handled too well. There is just a long string and some parsing would need to
be done to get hold of a single author

l There is the question of whether the elements title, author and price can be in any order. Both are well
formed but one might be more desirable.

l What is the unit of currency. It is feasible that the books were purchased using different currencies.
l Given the way the authors have been typed with first name first, it would be difficult to get books in

alphabetical order by author surname without some post processing.
l Why elements and not attributes?

-- 14 --
© Oxford Brookes University 2002

One argument against the use of attributes arises in the case of the authors. There probably needs to be
some substructure. For example, an element authors might be defined enclosing a set of author elements.
While this would be a simple extension to the element representation, it would be difficult to produce that
substructure as an attribute value without making the string cumbersome:

<book title="XSLT and XPath"
authors="(John Robert Gardner) , (Zarella L. Rendon)" price="£45.99" />

There is also a problem with the book whose title contains &. You cannot write & or &. A good design
rule is not to use attributes if that leads to having to construct a parser for the attribute value. The same
problem arises if a £ sign is added to the price. so some guidance might be:

l If in doubt, use elements not attributes
l Don't use attributes that need their values parsing
l XML is a lightweight parser, use it
l Restrict attributes to information that is unique and tightly bound to the element and its value
l Difficult to style attributes using CSS
l Try and think what questions may be asked
l Wil it be a human or a machine?
l Don't construct badly designed XML

An example of badly designed XML is the one below where there was a need to introduce some markup to
indicate what has changed in a document. This could be done by pairs of empty elements as follows:

<para>This is a paragraph <startrev />that I have added a phrase too.</para>
<para>This is a new paragraph<endrev /></para>
<para>My original second paragraph</para>

This is badly designed. The parsing of the XML would not yield a structure that kept the changed part as a
single semantic unit. Rather more verbose but better structured would be:

<para>This is a paragraph <rev >that I have added a phrase too.</rev></para>
<para><rev >This is a new paragraph</rev></para>
<para>My original second paragraph</para>

-- 15 --
© Oxford Brookes University 2002

3.3 Extending the Book Example
Below is an extension to the book example. Each book has been given its unique ISBN number and this is
appropriate as an attribute. The author names have been made into two elements so that getting at the
surnames will be easier. A subtitle option has been provided and the publisher has been included. The price
now gives the currency value as an attribute of price. This is unique so again might be a sensible attribute:

<book isbn="0-13-040446-2">
 <title>XSLT & XPath</title>
 <subtitle>A Guide to XML Transformations</subtitle>
 <authors>
 <author>
 <surname>Gardner</surname>
 <forenames>John Robert</forenames>
 </author>
 <author>
 <surname>Rendon</surname>
 <forenames>Zarella L.</forenames>
 </author>
 </authors>
 <price currency="GBP">45.99</price>
 <publisher>Prentice-Hall</publisher>
 <date>2002</date>
</book>

3.4 A Staff Directory
Below is a typical entry in the Rutherford Appleton Laboratory Staff Directory:

Matthews, BM (Brian) Dr
ITD
Email: B.M.Matthews@rl.ac.uk
Fax: RAL+5831
R1 1.72 RAL+6648

Marking this up in XML might be done as follows:

<Employee>
<Name>
 <Surname>Matthews</Surname>
 <Firstname>Brian</Firstname>
 <Firstname>Martin</Firstname>
</Name>
<Title>Dr</Title>
<Dept>ITD</Dept>
<Email>B.M.Matthews@rl.ac.uk</Email>
<Tel code="RAL">6648</Tel>
<Fax code="RAL">5831</Fax>
<Building site="RAL">1</Building>
<Room>1.72</Room>
</Employee>

In this case the decision has been made to separate out all the forenames into separate elements. This
would be useful if, for example, there were staff members called John Albert Smith, John Maynard Smith,
John Robert Smith, etc. The Laboratory has more than one site so the attributes site and code have been
used to define the location and which telephone exchange the number referes to.

-- 16 --
© Oxford Brookes University 2002

3.5 CD Collection
Here is a possible way of marking up a CD Collection. The label for this particular CD is unknown and so has
been left blank which is perfectly acceptable. Note the work element is the only one where position is
important as the tracks have been listed in the order they appear:

<cd>
<artist>Aatabou, Najat</artist>
<title>The Voice of the Atlas</title>
<label></label>
<catalog>CDORBD 069</catalog>
<time>61.15</time>
<filed>C05 World</filed>
<playlist>
<work>Baghi narajah</work>
<work>Finetriki</work>
<work>Shouffi rhirou</work>
<work>Lila ya s'haba</work>
<work>Ouardatte lajnane</work>
<work>Ditih</work>
</playlist>
</cd>

3.6 SVG
A real world example of an XML Application is Scalable Vector Graphics (SVG). Here considerable used has
been made of attributes. The only content that is not defined by attributes is the inner text associated to an
element.

<svg viewBox="0 0 1023 640" xmlns:xlink="http://www.w3.org/1999/xlink" >

<rect class="background" width="1023" height="640"/>

<g style="stroke:none; fill:lime;"
transform="translate(145, 112) rotate(20) translate(-145, -112)">

<path d="M 0 112c40 48 120-32 160-6c0 0 5 4 10-3c10-103 50-83 90-42c0 0 20
12 30 7c-2 12-18 17-40 17c-55-2-40 25-20 35c30 20 35 65-30 71c-50 4-170 4-
200-79 z"/>

</g>

</svg>

-- 17 --
© Oxford Brookes University 2002

4. Styling

l 4.1 Styling XML
l 4.2 CSS
l 4.3 Display Property

4.1 Styling XML
To present XML to the user, you need to style it. One possibility is Cascading Style Sheets (CSS). CSS
provides linear styling in the same way as you provide styling to HTML. Styling attributes is not easy until
you get to CSS3 so styling is more appropriate when you have defined a set of elements as the markup.
Linking a stylesheet to an XML file requires a Processing Instruction which indicates the agent that will do the
styling. The simplest example is CSS.

4.2 CSS
The Processing Instruction that links a CSS style sheet to a document has the form:

<?xml-stylesheet type="text/css" href="URL" ?>

You can add several style sheets and they concatenate just like @import in CSS. It is also possible for the
Processing Instruction to point to an embedded style sheet:

<?xml-stylesheet type="text/css" href="#stylesheet" ?>
- - -
<style id="stylesheet">
- - -
</style>

A possible style sheet for our book example might be the file ie.css which has the following contents:

books {background-color:navajowhite;display:block}
book {margin:5pt;display:block}
title {font-size:20pt;color:red;font-weight:bold;display:inline}
author{font-size:18pt;color:blue;display:inline}
price {display:none}

The Book File itself would contain a reference to the style sheet:

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="ie.css"?>
<books>
<book>
<title>XML IE5</title>
<author>Alex Homer</author>
<price>27.49</price>
</book>
. . .
</books>

Note that there is a need to indicate what type of element each XML element is. The styling display:block
indicates it is a block-level element while display:inline indicates it is an inline element. A value of
display:none indicates it is not to be displayed at all. The styling would look something like:

-- 18 --
© Oxford Brookes University 2002

XML IE5 Alex Homer

XML Design and Implementation Paul Spencer

XML in Action William J. Pardi

XML: A Primer Simon St. Laurent

XSLT & XPath John Robert Gardner and Zarella L. Rendon

The XML Companion Neil Bradley

It would be possible to embed the style sheet in the file as follows:

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="#stylesheet"?>
<embedded>
<style id="stylesheet">
<!--
books {background-color:navajowhite;display:block}
book {margin:5pt;display:block}
title {font-size:20pt;color:red;font-weight:bold;display:inline}
author{font-size:18pt;color:blue;display:inline}
price {font-size:16pt;color:green;display:none}
-->
</style>
<books>
<book>
<title>XML IE5</title>
<author>Alex Homer</author>
<price>27.49</price>
</book>
. . .
</books>
</embedded>

-- 19 --
© Oxford Brookes University 2002

4.3 Display Property
The possible values are given below. Table handling is supported in Opera but not IE6.

Here is an example where the book list has been defined as an HTML-like list:

books {display:block;margin:10pt}
book {display:block;margin:20pt}
book *{display:list-item}

This would appear as:

Value Meaning Like HTML

inline inline element em

block block level element p

list-item list item li

none No display None

run-in Allows for run-in headers None

compact Header in margin None

marker

table Table table

inline-table Table does not start on a newline None

table-row-group Groups one or more rows tbody

table-header-group Groups one or more rows at head thead

table-footer-group Groups one or more rows at foot tfoot

table-row A row of cells tr

table-column-group Groups several columns colgroup

table-column A column of cells col

table-cell Table cell th, td

table-caption Caption caption

-- 20 --
© Oxford Brookes University 2002

l XML IE5
l Alex Homer
l 27.49

l XML Design and Implementation
l Paul Spencer
l 36.99

l XML in Action
l William J. Pardi
l 37.49

l XML: A Primer
l Simon St. Laurent
l 23.99

l XSLT & XPath
l John Robert Gardner and Zarella L. Rendon
l 45.99

l The XML Companion
l Neil Bradley
l 24.95

CSS, for certain applications, is all that is need to present the XML document and gives all the functionality of
HTML and CSS with some extensions.

-- 21 --
© Oxford Brookes University 2002

5. XML Namespaces

l 5.1 Introduction
l 5.2 Student Example
l 5.3 Book Example

5.1 Introduction
The aim of the W3C XML Namespaces standard was to allow elements and attributes within an XML
document to come from different markup vocabularies (XML applications) and to unambiguously identify
which vocabulary they came from. The momentum behind XML means there are many XML applications and
the possibility of using several together arises. Each application must have its own namespace and we need
to differentiate between different XML namespaces. For each XML namespace, there is a collection of
names used as element types and attribute names and this needs to be identifed as a unique resource.
Let us look at an example.

5.2 Student Example
|Here is a simple exam paper marked up in XML

<exam paper="P08770">
<student>Fred Smith</student>
<qapair>
<question>Who invented the Web?</question>
<answer>Tim Berners-Lee</answer>
</qapair>
<qapair>
<question>What year was the web invented?</question>
<answer>1989</answer>
</qapair>
</exam>

The problem is that we need to define an element called student for each student and another called paper
that defines the course it is associated with. But the administration almost certainly has such a database
already and let us assume these are also stored in XML.

Student Records
The XML database for student records might be something like:

<studentset>
<student_record>
<student>Fred Smith</student>
<age>19</age>
<sex>male</sex>
<nationality>UK</nationality>
</student_record>
- - -
</studentset>

Record of Papers
The XML database for Courses and Exam Papers might be:

<year_two>
<webtech paper="P08770">
<prereq paper="P08769"/>
<exam_date>15.01.02</exam_date>
</webtech>
- - -
</year_two>

-- 22 --
© Oxford Brookes University 2002

Nameset Qualifiers
We have 3 different XML applications and rather than each define the element student and the attribute
paper, it would be useful if there was a single place where they were defined. This is achieved in XML by
giving each a separate namespace defined as follows:

l Each namespace has a prefix that is associated with it
l A namespace declaration maps a namespace to a specific prefix
l XML names in the nameset do not have to use the prefix
l Attaching the prefix uniquely defines their nameset
l XML names consist of the prefix followed by colon and the local element tag name

To define the namespace uniquely requires a unique identifier for each namepsace. The easiest way on the
Web to do that is by defining it as a URL. These are unique by definition:

<tagname xmlns:prefx="http://ral.ac.uk/prefx">
<inner>
- - -
</inner>
</tagname>

Here we have defined that the prefix we are going to use at the moment for the namespace specified by the
URL http://ral.ac.uk/prefx is going to be prefx. To be very precise as to which namespace tags belong to, the
example could be written:

<prefx:tagname xmlns:prefx="http://ral.ac.uk/prefx">
<prefx:inner>
- - -
</prefx:inner>
</prefx:tagname>

The scope of the namespace element is the body of the element where it is declared.

Exam Paper
our exam example could now be written using the two other namespaces sr and csr defined by:

<studentset xmlns:sr="http://brookes.ac.uk/strcs">
<student_record>
<student>Fred Smith</student>
<age>19</age>
<sex>male</sex>
<nationality>UK</nationality>
</student_record>
- - -
</studentset>

<year_two xmlns:csr="http://brookes.ac.uk/csrcns">
<webtech paper="P08770">
<prereq paper="P08769"/>
<exam_date>15.01.02</exam_date>
</webtech>
- - -
</year_two>

-- 23 --
© Oxford Brookes University 2002

The exam paper could then be defined using the student element from the http://brookes.ac.uk/strcs
namespace and the paper attribute from the http://brookes.ac.uk/csrcns namepsace. the way they are
used by the exam paper application is to declare the use locally and define the prefix that will be used locally
for each:

<pap:exam
xmlns:mysr="http://brookes.ac.uk/strcs"
xmlns:mycsr="http://brookes.ac.uk/csrcns"
xmlns:pap="http://brookes.ac.uk/marking"
mycsr:course="P08770">
<mysr:student>Fred Smith</sr:student>
<pap:qapair>
<pap:question>Who invented the web</pap:question>
<pap:answer>Tim Berners-Lee</pap:answer>
- - -
</pap:qapair>
</pap:exam>>

A default namespace can be defined by a namespace declaration that does not define a prefix. For
example:

<books xmlns="http://...">
<book title="fred">
. . .
</book>
<book title="frank">
. . .
</book>
</books>

Here, the elements books and book together with any other elements used within the books element belong
to the namespace specified if no namespace prefix is given.
However, the default namespace does not apply to attributes. In consequence, the attribute title does not
automatically belong to the declared namespace unlike the book element itself.

5.3 Book Example
A second example where namespaces could be useful was our book example where clearly it is sensible to
use the currency names defined in an ISO database and the Publishers names declared in a Publishers
Database. So we get:

<currencysymbols xmlns:currency="http://www.iso.com/4217.dtd">
<currency><symbol>ALL</symbol><country>Albania</country><name>Lek</name></currency>
<currency><symbol>AMD</symbol><country>Armenia</country><name>Dram</name></currency>
<currency><symbol>ATS</symbol><country>Austria</country><name>Schilling</name></currency>
<currency><symbol>AUD</symbol><country>Australia</country><name>Dollar</name></currency>
...
</currencysymbols>

<publisherlist xmlns:publisher="http://www.lights.com/publisher.dtd">
<creator>http://www.lights.com/publisher/db/</creator>
<base></base>
<publisher><url>1/781</url><name>010 Publishers</name></publisher>
<publisher><url>3/1443</url><name>101 Publishing</name></publisher>
<publisher><url>6/1436</url><name>1st Affordable
Publishers</name></publisher>
<publisher><url>1/7311</url><name>1st4sport, Coachwise</name></publisher>
...
</publisherlist>

-- 24 --
© Oxford Brookes University 2002

The book XML application would then look like:

<books
xmlns:currency="http://www.iso.com/4217.dtd"
xmlns:publisher="http://www.lights.com/publisher.dtd">
<book isbn="0-13-040446-2">
 <title>XSLT & XPath</title>
 <subtitle>A Guide to XML Transformations</subtitle>
 <authors>
 <author>
 <surname>Gardner</surname>
 <forenames>John Robert</forenames>
 </author>
 <author>
 <surname>Rendon</surname>
 <forenames>Zarella L.</forenames>
 </author>
 </authors>
 <price>
 <currency:symbol>GBP</currency:symbol>
 <amount>45.99</amount>
 </price>
 <publisher:name>Prentice-Hall</publisher:name>
 <date>2002</date>
</book>

Unique Specification of Namespace
The namespace URL may point to the Document Type Definition for the namespace but it does not have to.
All that is required is that the URL uniquely defines the namespace. It could point to an informal description.
It could point to nothing as long as the URL is not used for something else

Links
Another example of the use of namespaces is within the definition of XML itself. In HTML, links are an
integral part of the language via the a element. Every XML application is going to have to define links if it is
used on the Web so it would be sensible to have a separate namespace for links and this is what has been
done. There is a separate XML application called XLink and the namespace declaration is:
xmlns:xlink="http://www.w3.org/1999/xlink". This is used in applications like SVG.
Namespaces will be covered in more detail as part of P08772 in the Spring term.

-- 25 --
© Oxford Brookes University 2002

6. A Bibliography of Different Types of Documents

l 6.1 Introduction
l 6.2 Books
l 6.3 Standards
l 6.4 Masters Theses
l 6.5 Reports

6.1 Introduction
The examples we have shown so far have had quite a regular structure. In many cases, XML documents are
not that simple. Consider the case of a true bibliography containing different types of publications. While it is
clear that books have authors, standards documents are usually composed by a set of people and it is not
usual to list them as authors. For theses, other information such as the university that the person attended
might be of interest. Let us see how this would change the simple structure we introduced for books in
Section 3.1.

6.2 Books
There is not a great deal more to say about books so let us have a format as follows.

<Book citation="B247">
 <Author>
 <Firstname>Tim</Firstname>
 <Surname>Berners-Lee</Surname>
 </Author>
 <BookTitle>
 <Title>Weaving the Web</Title>
 </BookTitle>
 <Publisher>Orion business</Publisher>
 <Year>1999</Year>
</Book>

The only thing new is the citation attribute on the top level element giving it a unique local identifier.

6.3 Standards
Standards originate from several organisations. It may not be necessary to define the name of the author or
editor but it is important to give the organisation that produced the standard. in some countries, it is
mandatory to apply the standards defined by some international standards bodies but not others.
Most standards have a unique number or URL that specifies them. This is needed as it needs to be clear to
which standards apply to a particular object. As standards get updated, the year is also important as it is with
books. Finally, standards, particularly web standards, come in a variety of formats depending on whether the
standard is to be readon the screen or on paper. It is important to know which copies of a standard are
identical. This leads to a format something like:

<Standard citation="S832">
 <Title>Extensible Markup Language (XML) 1.0</Title>
 <Organisation>World-Wide Web Consortium</Organisation>
 <Number>REC-xml-19980210</Number>
 <Year>1998</Year>
 <Copy href="http://www.w3.org/TR/1998/REC-xml-19980210" type="text/html"
xml:lang="en"/>
 <Copy href="http://www.w3.org/TR/1998/REC-xml-19980210.pdf"
type="application/pdf" xml:lang="en"/>
 <Copy href="http://www.mintert.com/xml/trans/REC-xml-19980210-de.html"
type="text/html" xml:lang="de"/>
</Standard>

-- 26 --
© Oxford Brookes University 2002

6.4 Masters Theses
For Master Theses, the main addition has been the university that awarded the thesis and the date has been
more precisely defined by including the month as well as the year. This is less usual for books.

<MastersThesis citation="M001">
 <Author>
 <Firstname>Kevin</Firstname>
 <Surname>O'Neill</Surname>
 </Author>
 <Title>From A to Web: moving data on the World-Wide Web</Title>
 <School>University of Sunderland</School>
 <Year>1999</Year>
 <Month>June</Month>
</MastersThesis>

6.5 Reports
Technical Reports frequently go through many iterations before the final version is produced. In the case of
the W3C, the internal reports go through some precise stages such as Working Draft, Candidate
Recommendation, Proposed Recommendation etc. It is important to know which stage such a Report has
reached so in this case we add an element that defines the Type of the Report.

<TechReport citation="T001">
 <Title>XML Schema Part 1: Structures</Title>
 <Organisation>World-Wide Web Consortium</Organisation>
 <Type>Working Draft</Type>
 <Number>WD-xmlschema-1-20000922</Number>
 <Year>2000</Year>
 <Copy href="http://www.w3.org/TR/2000/WD-xmlschema-1-20000922"
type="text/html" xml:lang="en"/>
</TechReport>

-- i --
© Oxford Brookes University 2002

Appendix A

References
There are some useful Web sites and books relevant to XML:

1. http://www.w3.org/MarkUp/
The W3C HTML Web Site which contains up-to-date links to anything relevant to HTML.

2. http://www.w3.org/TR/html4/
HTML Level 4.01 Recommendation, the latest version of HTML, 24 December 1999.

3. http://www.oasis-open.org/cover/
Robin Cover's XML Cover Page
Addison Wesley, 1998.

4. Big Book of World Wide Web Recs, Peter Loshin
Morgan Kaufman, 2000.

5. Web Protocols and Practice, Balachander Krishnamurthy, Jennifer Rexford
Addison Wesley, 2001.

6. XML How to Program, Deitel, Deitel, Nieto, Lin and Sadhu
Prentice Hall, 2000.

7. http://www.w3.org/People/Raggett/tidy/, W3C's Tidy Tool that produces legal HTML and tidies up the
document

8. http://validator.w3.org/, W3C's Validation Service for Web Pages
9. http://www.w3.org/TR/xhtml1/

XHTML Level 1.0 Recommendation, a reformulation of HTML as an XML Application, 26 January
2000

-- ii --
© Oxford Brookes University 2002

Appendix B

XML Activity Statement (January 1996, updated June 1996 and in 1997)

SGML, XML, and Structured Document Interchange
This is W3C activity statement for SGML, XML, and Structured Document Interchange. It is one of the
Architecture Domain activities.

l Introduction
l Requirements
l Products
l Current Situation
l Next Step

Introduction
Most documents on the Web are stored and transmitted in HTML. HTML is a simple language well-suited for
hypertext, multimedia, and the display of small and reasonably simple documents. HTML is based on SGML
(Standard Generalized Markup Language), an ISO standard system for defining and using document
formats.
SGML makes it possible to define your own formats for your own documents, to handle large and complex
documents, and to manage large information repositories. Allowing generic SGML in Web documents would
facilitate large-scale commercial Web publishing and make it much easier to apply advanced technologies
such as Java to Web documents on the user's desktop. However, the full SGML specification is very
expensive to implement and goes beyond the needs of the great majority of Web users.
The XML activity is dedicated to bringing the key benefits of generic SGML to the Web in a manner that is
easy to implement and understand while remaining fully compliant with the ISO standard.
The goal of the activity is to enable an ISO-compliant subset of SGML, the Extensible Markup Lanaguage
(XML), to be served, received, and processed on the Web. As in the case of HTML, the implementation of
XML on the Web will require attention not just to structure and content, but also to the standardization of
linking and display functions. Since a key design feature of XML is its clear separation of syntax from other
processing behaviors, the explicit standardization of the most important of those behaviors (linking and
stylesheets) is a necessary part of the XML activity in order to ensure the vendor- and platform-neutral
interoperation of XML documents. As in the case of XML syntax, the standardization of XML linking and
stylesheets takes place within the context of existing international text processing standards.

Requirements
Web servers and clients conforming to the relevant standards must be able to exchange generic XML
documents in a transparent manner. In particular:

l Web servers with XML content must be able prepare data for transmission. This typically includes the
generation of a context wrapper with each XML fragment together with pointers to an associated
Document Type Definition (DTD) and one or more stylesheets.

l Clients that process XML must be able to unpackage the fragment, parse it in context according to a
DTD if required to do so by the document, render it (if a rendering application) in accordance with a
specified stylesheet, and correctly interpret hypertext semantics (links, etc.) associated with various
document elements.

-- iii --
© Oxford Brookes University 2002

Products
The specific deliverables of the SGML WG are being developed in three phases, as follows:

l Phase I: A specification for the syntax of XML (Extensible Markup Language), a simplified
version of SGML (ISO 8879) suitable for Internet applications. The latest working draft of WD-xml-
lang was released in March 1997; this is also available in a compressed PostScript version. A
Japanese translation of WD-xml-lang has been made by Fuji Xerox. The next revision of WD-xml-lang
is scheduled to be released June 30, 1997.

l Phase II: A specification of standard hypertext mechanisms for XML applications based on
HyTime (ISO/IEC 10744) and the Guidelines of the Text Encoding Initiative. An initial draft of the
xml-link spec was presented at the WWW6 Conference (Santa Clara, April 1997). This is also
available in a compressed PostScript version. A Japanese translation of WD-xml-link has been made
by Fuji Xerox. The next draft revision of WD-xml-link is scheduled to be released June 30, 1997.

l Phase III: The specification of a standard stylesheet language for XML publishing applications
based on DSSSL (ISO/IEC 10179) together with public text and extensions needed to apply the
DSSSL stylesheet language to Web browsers. Target delivery: a draft (WD-xml-style) to be delivered
at the SGML/XML 97 Conference in Washington, D. C., December 1997.

Current situation
A paper titled "XML, Java, and the Future of the Web" gives one view of the kind of advanced Web
applications made possible by XML; this paper is also available in a compressed PostScript version that
demonstrates the application of DSSSL.
Accomplishments of this activity so far include:

l Formation of an SGML Working Group that coordinates with existing related standards efforts and
provides specifications where needed to form a complete SGML Internet solution.

l Delivery of a public report on the generic SGML activity within the W3C at the Seybold Conference in
San Francisco, September 1996.

l Completion of the first working draft of the syntactic component of XML, a subset of SGML designed
for Internet applications.

l Presentation of the XML draft at the SGML 96 Conference in Boston, November 1996.
l Formation of the xml-dev mailing list for XML developers hosted by Imperial College, London.
l Creation of an XML FAQ maintained by Peter Flynn.
l Presentation by the Graphic Communications Association of the first XML Conference in San Diego,

March 1997.
l Publication of the revised version of Part 1: Syntax in March 1997.
l Publication of the first draft of Part 2: Linking in April 1997 at the WWW6 Conference in Santa Clara.
l Approval of a Technical Corrigendum to ISO 8879:1986 to align features of XML with the SGML

standard at the May 1997 meeting of ISO/IEC JTC1/SC18/WG8 in Barcelona.

Next step
Activities within the W3C
The SGML ERB and WG are currently completing Phases I and II of the XML activity described above.
Requirements for certain enhancements to XML syntax (structured attributes, alternative schemas, multiple
name spaces) requested by other W3C activities are under currently under review, and these features may
become part of the XML 1.0 working draft before it is submitted for approval as a W3C recommendation.
On July 1, 1997, the group currently known as the W3C SGML Editorial Review Board will become known as
the W3C XML Working Group and will begin working under the process rules currently governing the
activities of W3C working groups. On the same date, the group currently known as the W3C SGML Working
Group will become known as the W3C XML Interest Group and will begin working under the process rules
currently governing the activities of W3C interest groups.

-- iv --
© Oxford Brookes University 2002

Activities outside the W3C
Related efforts are currently taking place outside the W3C:

l Work on transmission of SGML fragments is well advanced within a technical committee of SGML
Open, the consortium for SGML tools vendors.

l SGML Open has also specified a catalog mechanism for managing SGML document entities.
l ISO/IEC JTC1/SC18/WG8 has approved a Technical Corrigendum to ISO 8879:1986 in order to

reconcile certain user requirements of XML with the SGML standard. That corrigendum has been
forwarded to ISO for formal balloting.

-- v --
© Oxford Brookes University 2002

Appendix C

XML, Java, and the future of the Web

Jon Bosak, Sun Microsystems

Introduction
The extraordinary growth of the World Wide Web has been fueled by the ability it gives authors to easily and
cheaply distribute electronic documents to an international audience. As Web documents have become
larger and more complex, however, Web content providers have begun to experience the limitations of a
medium that does not provide the extensibility, structure, and data checking needed for large-scale
commercial publishing. The ability of Java applets to embed powerful data manipulation capabilities in Web
clients makes even clearer the limitations of current methods for the transmittal of document data.
To address the requirements of commercial Web publishing and enable the further expansion of Web
technology into new domains of distributed document processing, the World Wide Web Consortium has
developed an Extensible Markup Language (XML) for applications that require functionality beyond the
current Hypertext Markup Language (HTML). This paper [0] describes the XML effort and discusses new
kinds of Java-based Web applications made possible by XML.

Background: HTML and SGML
Most documents on the Web are stored and transmitted in HTML. HTML is a simple language well suited for
hypertext, multimedia, and the display of small and reasonably simple documents. HTML is based on SGML
(Standard Generalized Markup Language, ISO 8879), a standard system for defining and using document
formats.
SGML allows documents to describe their own grammar -- that is, to specify the tag set used in the document
and the structural relationships that those tags represent. HTML applications are applications that hardwire a
small set of tags in conformance with a single SGML specification. Freezing a small set of tags allows users
to leave the language specification out of the document and makes it much easier to build applications, but
this ease comes at the cost of severely limiting HTML in several important respects, chief among which are
extensibility, structure, and validation.

l Extensibility. HTML does not allow users to specify their own tags or attributes in order to
parameterize or otherwise semantically qualify their data.

l Structure. HTML does not support the specification of deep structures needed to represent database
schemas or object-oriented hierarchies.

l Validation. HTML does not support the kind of language specification that allows consuming
applications to check data for structural validity on importation.

In contrast to HTML stands generic SGML. A generic SGML application is one that supports SGML language
specifications of arbitrary complexity and makes possible the qualities of extensibility, structure, and
validation missing from HTML. SGML makes it possible to define your own formats for your own documents,
to handle large and complex documents, and to manage large information repositories. However, full SGML
contains many optional features that are not needed for Web applications and has proven to have a
cost/benefit ratio unattractive to current vendors of Web browsers.

The XML effort
The World Wide Web Consortium (W3C) has created an SGML Working Group to build a set of
specifications to make it easy and straightforward to use the beneficial features of SGML on the Web. See
the W3C SGML Activity page [1] for the current status of this effort. The goal of the W3C SGML activity is to
enable the delivery of self-describing data structures of arbitrary depth and complexity to applications that
require such structures.
The first phase of this effort is the specification of a simplified subset of SGML specially designed for Web
applications. This subset, called XML (Extensible Markup Language), retains the key SGML advantages of
extensibility, structure, and validation in a language that is designed to be vastly easier to learn, use, and
implement than full SGML.

-- vi --
© Oxford Brookes University 2002

XML differs from HTML in three major respects:

1. Information providers can define new tag and attribute names at will.
2. Document structures can be nested to any level of complexity.
3. Any XML document can contain an optional description of its grammar for use by applications that

need to perform structural validation.

XML has been designed for maximum expressive power, maximum teachability, and maximum ease of
implementation. The language is not backward-compatible with existing HTML documents, but documents
conforming to the W3C HTML 3.2 specification can easily be converted to XML, as can generic SGML
documents and documents generated from databases.
An initial working draft for XML 1.0 [2] has been released for public discussion. A complete specification that
includes methods for associating hypertext linking and stylesheet mechanisms with XML documents is
scheduled for release at the Sixth World Wide Web Conference in April, 1997.

Web applications of XML
The applications that will drive the acceptance of XML are those that cannot be accomplished within the
limitations of HTML. These applications can be divided into four broad categories:

1. Applications that require the Web client to mediate between two or more heterogeneous databases.
2. Applications that attempt to distribute a significant proportion of the processing load from the Web

server to the Web client.
3. Applications that require the Web client to present different views of the same data to different users.
4. Applications in which intelligent Web agents attempt to tailor information discovery to the needs of

individual users.

The alternative to XML for these applications is proprietary code embedded as "script elements" in HTML
documents and delivered in conjunction with proprietary browser plug-ins or Java applets. XML derives from
a philosophy that data belongs to its creators and that content providers are best served by a data format
that does not bind them to particular script languages, authoring tools, and delivery engines but provides a
standardized, vendor-independent, level playing field upon which different authoring and delivery tools may
freely compete.

Database interchange: the universal hub
A paradigmatic example of this first category of XML applications is the information tracking system for a
home health care agency.
Home health care is a major component of America's multibillion-dollar medical industry that continues to
increase in importance as the health care burden is shifted from hospitals to home care settings. Information
management is critical to this industry in order to meet the record-keeping requirements of the federal
agencies and health maintenance organizations that pay for patient care.
The typical patient entering a home health care agency is represented to the information system by a large
collection of paper-based historical materials in the form of patient medical histories and billing data from a
variety of doctors, hospitals, pharmacies, and insurance companies. The biggest task in getting the patient
into the system is the manual entry of this material into the agency's database.
The coming of the Web has given the medical informatics community the hope that an electronic means can
be found to alleviate this burden. Unfortunately, existing Web applications represent fundamentally
insufficient models for an adequate solution. Hospitals have begun to offer the agencies a solution that goes
something like this:

1. Log into the hospital's Web site.
2. Become an authorized user.
3. Access the patient's medical records using a Web browser.
4. Print out the records from the browser.
5. Manually key in the data from the printouts.

The knowledgeable reader may smile at this "solution," but in fact this is not a joke; this is an actual proposal
from a large American hospital known for its early adoption of advanced medical information systems.

-- vii --
© Oxford Brookes University 2002

A slightly more sophisticated version of this "solution" envisions the operator reading the patient data from
the Web browser and keying it directly into the agency's online forms-based interface in a separate window
instead of making a printout first. The only difference between this version and the previous one is that it
saves the paper that would have been needed for the printout. It does nothing to address the root of the
problem. A real solution would look more like this:

1. Log into the hospital's Web site.
2. Become an authorized user.
3. Access the patient's medical records in a Web-based interface that represents the records for that

patient with a folder icon.
4. Drag the folder from the Web application over to the internal database application.
5. Drop it into the database.

However, this solution is not possible within the limitations of HTML, for three reasons.

l The HTML tag set is too limited to represent or differentiate between the multitude of database fields
in the mixture of documents making up the patient's medical history.

l HTML is incapable of representing the variety of structures in those documents.
l HTML lacks any mechanism for checking the data for structural validity before the receiving

application attempts to import it into the target database.

One technically feasible way to implement seamless interchange of patient care records is simply to require
all hospitals and health care agencies to use a single standard system dictated by the government (such an
approach has actually been suggested). In an environment where hospitals are going out of business on a
daily basis and many health care agencies are in deep financial difficulty, however, a scheme that would
require them to replace their existing heterogeneous systems with a single new system en masse is hardly
practical.
The other way to enable interchange between heterogeneous systems is to adopt a single industry-wide
interchange format that serves as the single output format for all exporting systems and the single input
format for all importing systems. This is, in fact, the purpose for which SGML was initially designed, and XML
simply carries on this tradition.
A number of industries, including the aerospace, automotive, telecommunications, and computer software
industries, have been using hub languages to perform data interchange for years, and by this time the
process is well understood. Typically, the major players in an industry form a standards consortium tasked
with defining a Document Type Definition, which is the way in which the tag set and grammar of a markup
language are defined. This DTD can then be sent with documents that have been marked up in the industry
standard language using off-the-shelf editing tools, and any standard application on the receiving end can
validate and process them.
The XML solution is system-independent, vendor-independent, and proven by over a decade of SGML
implementation experience. XML merely extends this proven approach to document interchange over the
Web. Interestingly, the same day on which the first XML 1.0 draft was released also saw the formal
announcement of an SGML initiative within HL7, the standards organization for health care IS vendors, to
develop a Health Care Markup Language designed to solve exactly the kind of problem described in this
example.
Previous vertical-industry efforts have shown that capturing data in a rich markup often has benefits beyond
the immediate requirements of data exchange. In a well-designed standardized patient data system, for
example, specific information originally gathered in the course of a routine physical exam and tagged
<allergies>, <drug-reactions>, and so on would instantly be available to alert the staff of an emergency room
that an unconscious patient from a distant city was allergic to penicillin. The ability of XML to define tags
specific to an area of application is critical to this scenario, because the otherwise unqualified word
"penicillin" in the thousands of pages of a patient's entire medical history could not trigger the recognition that
the same word inside an <allergies> element could trigger.
The health care example is relevant not only because of the scope of the problem and the enormous sums of
money involved but also because it is paradigmatic of a very wide range of future Web applications -- any in
which Web clients (or Java applications running on those clients) are expected to mediate the lossless
exchange of complex data between systems that use different forms of data representation in a way that can
be standardized across an industry or other interest group. Some random examples of such applications are:

-- viii --
© Oxford Brookes University 2002

l Legal publishing
l The government drug approval process
l Collaborative CAD/CAM efforts
l Collaborative calendar management across different systems
l Any corporate network application that works across databases, especially where policies must be

enforced: purchase orders, expense requests, etc.
l Exchange of information between players in any broker-organized business: insurance, securities,

banking, etc.

Distributed processing: giving Java something to do
A paradigmatic example of this second category of XML applications is the data delivery system designed by
the semiconductor industry.
Each major semiconductor manufacturer maintains several terabytes of technical data on all of the ICs that it
produces. To enable interchange of this data, an industry consortium (the Pinnacles Group) was formed
several years ago by Intel, National Semiconductor, Philips, Texas Instruments, and Hitachi to design an
industry-specific SGML markup language. The consortium finished that specification in 1995, and its member
companies are now well into the implementation phase of the process.
One might think that the rise in popularity of HTML would cause the Pinnacles members to reconsider their
decision, but in fact the limitations of HTML have convinced them that their original strategy was the correct
one. Their initial idea was that the richly parameterized data stream made possible by the industry-specific
SGML markup would enable intelligent applications not merely to display semiconductor data sheets as
readable documents but actually to drive design processes. It is now recognized that this approach is a
perfect fit with the concept of distributed Java applets, and the vision of the near future is one in which
engineers can access a manufacturer's Web site and download not only viewable data on particular
integrated circuits but also a Java applet that allows them to model those circuits in various combinations.
The semiconductor application is a good demonstration of the advantages of XML because:

1. It requires industry-specific markup that cannot be implemented within the confines of the fixed HTML
tag set.

2. It requires that the data representation be platform- and vendor-independent so that data from a
variety of sources can be used to drive a variety of distributed applications (some of which may be
provided by third parties, generating a subindustry of providers of tools that can work with the
standardized data stream).

3. Its utility rests ultimately in the fact that a computation-intensive process (modeling circuits for hours at
a time) that would otherwise entail an enormous, extended resource hit on the server has been
changed into a brief interaction with the server followed by an extended interaction with the user's own
Web client. This aspect has been summed up in the slogan "XML gives Java something to do."

Note that validation, while sometimes important, does not always play the crucial role in this category of
applications that it does in applications where data must be checked for structural integrity before entering a
database. To make processing as efficient as possible, XML has been designed so that validation is optional
in applications where it is not needed.
As with the health-care example, the semiconductor application is notable not merely for the sheer size of the
market it represents but also because it is paradigmatic of an enormous range of future Java-based Web
applications -- virtually any application in which standardized data is expected to be manipulated in
interesting ways on the client. Perhaps the most obvious examples of such applications are the following:

l Design applications where the designer would otherwise use server cycles to consider various
alternatives: electronics, engineering, architecture, menu planning, etc.

l Scheduling applications where a customer would otherwise use server cycles to entertain various
possibilities: airlines, trains, buses, and subways; restaurants, movies, plays, and concerts. This is
what Easy Saabre and Ticketron will look like a few years from now as the economies of distributed
Java-based processing become evident.

l Commercial applications that allow consumers to explore alternatives by supplying different shopping
criteria: real estate, automobiles, appliances, etc.

l The entire spectrum of educational applications, a small subset of which are the ones we call "online
help".

l The entire spectrum of customer-support applications, ranging from lawn-mower maintenance through
technical support for computers.

-- ix --
© Oxford Brookes University 2002

A harbinger of applications to come in the last category is the Solution Exchange Standard, an SGML
markup language announced last June by a consortium of over 60 hardware, software, and communications
companies to facilitate the exchange of technical support information among vendors, system integrators,
and corporate help desks. In the words of the announcement:
The standard has been designed to be flexible. It is independent of any platform, vendor or application, so it
can be used to exchange solution information without regard to the system it is coming from or going to. [...]
Additionally, the standard has been designed to have a long lifetime. SGML offers room for growth and
extensibility, so the standard can easily accommodate rapidly changing support environments.
Such applications, which the XML subset is specifically designed to address, will grow in importance as
consumers come to expect interoperability among their data-manipulating applets and information providers
confront the realities of trying to support computation-intensive tasks directly on their Web servers.

View selection: letting the user decide
A third variety of XML applications are those in which users may wish to switch between different views of the
data without requiring that the data be downloaded again in a different form from the Web server.
One early application in this category will be dynamic tables of contents. It is possible now, using Web
servers built on object-oriented databases, to present the user with a table of contents into a large collection
of data that can be expanded with a mouse click to "open up" a portion of the TOC and reveal more detailed
levels of the document structure. Dynamic TOCs of this kind can be generated at run time directly from the
hierarchical structure of the document. Unfortunately, the Web latency built into every expansion or
contraction of the TOC makes this process sluggish in many user environments. A much better solution is to
download the entire structured TOC to the client rather than just individual server-generated views of the
TOC. Then the user can expand, contract, and move about in the TOC supported by a much faster process
running directly on the client.
A group at Sun actually implemented a form of this solution as part of a Java-based HTML help browser, but
the limitations of HTML required the team to come up with a couple of clever workarounds. In this application,
a TOC was constructed by hand (the lack of structure in ordinary HTML makes it impossible to reliably
generate a TOC directly from the document) using nonstandard tags invented for the purpose, and then the
TOC piece was wrapped in a comment within an HTML page to hide the nonstandard markup from Web
browsers. A Java applet downloaded with the HTML document interpreted the hidden markup and provided
the client-based TOC behavior.
In practice, this application worked very well and testified both to the ingenuity of its designers and to the
validity of the basic concept. But in an XML environment, neither the manual creation of the TOC nor its
concealment would have been necessary. Instead, standard XML editors would have been used to create
structured content from which a structured TOC could be generated at run time and downloaded to browsers
that would automatically create and display the TOC using either a downloaded Java applet or a standard set
of JavaHelp class libraries.
The ability to capture and transmit semantic and structural data made possible by XML greatly expands the
range of possibilities for client-side manipulation of the way data appears to the user. For example:

l A technical manual that covers both the Sparc and x86 versions of the Solaris operating system can
be made to appear like a manual for Sparc only, or a manual for x86 only, just by clicking a
preferences switch.

l An installation sheet that carries warnings in multiple languages can be made to show just the ones in
the language selected by the user.

l A document containing many annotations can be switched from a mode that shows only the text, to a
mode that shows only the annotations, to a mode that shows both, just by making a menu selection.

l A phone book sorted by last name can instantly be changed into a phone book sorted by first name.

This list only hints at the possible uses that creative Web designers will find for richly structured data
delivered in a standardized way to Web clients.

-- x --
© Oxford Brookes University 2002

Web agents: data that knows about me
A future domain for XML applications will arise when intelligent Web agents begin to make larger demands
for structured data than can easily be conveyed by HTML. Perhaps the earliest applications in this category
will be those in which user preferences must be represented in a standard way to mass media providers. The
key requirements for such applications have been summed up by Matthew Fuchs of Disney Imagineering:
"Information needs to know about itself, and information needs to know about me."
Consider a personalized TV guide for the fabled 500-channel cable TV system. A personalized TV guide that
works across the entire spectrum of possible providers requires not only that the user's preferences and
other characteristics (educational level, interest, profession, age, visual acuity) be specified in a standard,
vendor-independent manner -- obviously a job for an industry-standard markup system -- but also that the
programs themselves be described in a way that allows agents to intelligently select the ones most likely to
be of interest to the user. This second requirement can be met only by a standardized system that uses
many specialized tags to convey specific attributes of a particular program offering (subject category,
audience category, leading actors, length, date made, critical rating, specialized content, language, etc.).
Exactly the same requirements would apply to customized newspapers and many other applications in which
information selection is tailored to the indvidual user.
While such applications still lie over the horizon, it is obvious that they will play an increasingly important role
in our lives and that their implementation will require XML-like data in order to function interoperably and
thereby allow intelligent Web agents to compete effectively in an open market.

Advanced linking and stylesheet mechanisms
Outside XML as such, but an integral part of the W3C SGML effort, are powerful linking and stylesheet
mechanisms that go beyond current HTML-based methods just as XML goes beyond HTML.

Linking
Despite its name and all of the publicity that has surrounded HTML, this so-called "hypertext markup
language" actually implements just a tiny amount of the functionality that has historically been associated
with the concept of hypertext systems. Only the simplest form of linking is supported -- unidirectional links to
hardcoded locations. This is a far cry from the systems that were built and proven during the 1970s and
1980s.
In a true hypertext system of the kind envisioned for the XML effort, there will be standardized syntax for all
of the classic hypertext linking mechanisms:

l Location-independent naming
l Bidirectional links
l Links that can be specified and managed outside of documents to which they apply
l N-ary hyperlinks (e.g., rings, multiple windows)
l Aggregate links (multiple sources)
l Transclusion (the link target document appears to be part of the link source document)
l Attributes on links (link types)

The first draft of a specification for basic standardized hypertext mechanisms to be used in conjunction with
XML is scheduled for release at the Sixth World Wide Web Conference in April, 1997.

Stylesheets
The current CSS (cascading style sheets) effort provides a style mechanism well suited to the relatively low-
level demands of HTML but incapable of supporting the greatly expanded range of rendering techniques
made possible by extensible structured markup. The counterpart to XML is a stylesheet programming
language that is:

l Freely extensible so that stylesheet designers can define an unlimited number of treatments for an
unlimited variety of tags.

l Turing-complete so that stylesheet designers can arbitrarily extend the available procedures.
l Based on a standard syntax to minimize the learning curve.
l Able to address the entire tree structure of an XML document in structural terms, so that context

relationships between elements in a document can be expressed to any level of complexity.
l Completely internationalized so that left-to-right, right-to-left, and top-to-bottom scripts can all be dealt

with, even if mixed in a single document.
l Provided with a sophisticated rendering model that allows the specification of professional page layout

features such as multiple column sets, rotated text areas, and float zones.
l Defined in a way that allows partial rendering in order to enable efficient delivery of documents over

the Web.

-- xi --
© Oxford Brookes University 2002

Such a language already exists in a new international standard called the Document Style Semantics and
Specification Language (DSSSL, ISO/IEC 10179). Published in April, 1996, DSSSL is the stylesheet
language of the future for XML documents. An initial specification of a DSS SL subset [3] for use with XML
applications has already been published. This specification will be further developed as part of the XML
activity.

Conclusion
HTML functions well as a markup for the publication of simple documents and as a transportation envelope
for downloadable scripts. However, the need to support the much greater information requirements of
standardized Java applications will necessitate the development of a standard, extensible, structured
language and similarly expanded linking and stylesheet mechanisms. The W3C SGML effort is actively
developing a set of specifications that will allow these objectives to be met within an open standards
environment.

Acknowledgements
The author would like to thank his colleagues in the Davenport Group for early contributions to the
beginnings of this document. The example applications were clarified and expanded with the help of
participants in the workshop "Internet Applications of SGML and DSSSL" held at the GCA Information and
Technology Week in Seattle on August 23, 1996. Special thanks are due to Tim Bray, Kurt Conrad, Steve
DeRose, Matt Fuchs, and Murray Maloney for their outstanding contributions to the workshop.

Production note
This paper was written in HTML 3.2 and formatted by the Jade DSSSL engine [4] for printout. The section
numbers, headers, footers, and Table of Contents seen in the printed version are not part of the HTML
source [5] but were generated automatically as specified by a DSSSL stylesheet [6].

References
[0] http://sunsite.unc.edu/pub/sun-info/standards/xml/why/xmlapps.ps.zip
[1] http://www.w3.org/pub/WWW/MarkUp/SGML/activity
[2] http://www.w3.org/pub/WWW/TR/WD-xml-961114.html
[3] http://sunsite.unc.edu/pub/sun-info/standards/dsssl/dssslo/dssslo.htm
[4] http://www.jclark.com/jade/
[5] http://sunsite.unc.edu/pub/sun-info/standards/xml/why/xmlapps.htm
[6] http://sunsite.unc.edu/pub/sun-info/standards/dsssl/stylesheets/html32/html32hc. dsl

